Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Попытаемся разобраться в происходящем. Общая осо­бенность, характерная для всех трех типов воздушных пузырьков, выдутых из трех трубок разных диаметров, заключается в том, что, двигаясь, они колеблются. Амп­литуда этих колебаний оказывается тем большей, чем боль­ше размер пузырька. У самого крупного амплитуда ока­залась настолько большой, что при первом же колеба­нии пузырь прорвался, как бы сам себя проколол, и превра­тился в бублик. А пузырьки поменьше колеблются с меньшими амплитудами и сохраняют свою целостность.

В чем причина возникновения колебаний, кто их про­воцирует, как они поддерживаются? Ответ подсказывают кадры первого из отснятых эпизодов. На них отчетливо видно, что снизу вода устремляется в объем оторвавше­гося пузыря. Снизу потому,

что именно здесь давление во­ды максимально. В этот момент форма пузыря искажается, перестает быть сферической, а значит, ее поверхность увеличивается. Естественно, пузырь начинает бороться с этим насилием, стремясь вернуть себе сферическую фор­му. Колебания возникают в конкурентной борьбе: раз­ность давлений вверху и внизу пузыря искажает форму, а его стремление к уменьшению собственной поверхности эту форму восстанавливает.

Пользуясь понятием о лапласовском и гидростатичес­ком давлениях, можно об этой борьбе рассказать так: раз­ность гидростатических давлений, которая пропорцио­нальна диаметру пузыря, деформирует пузырь, а лапласовское давление, обратно пропорциональное диаметру пузыря, восстанавливает форму. Вот почему чем меньше пузырь, тем меньше размах колебаний. Ведь с уменьше­нием его размера деформирующее давление уменьшается, а восстанавливающее растет.

Колебания пузыря происходят в воде. Грамотнее гово­рить так: колеблется не пузырь, а вода вблизи области, где она отсутствует и которую мы называем пузырем. А если дело обстоит так, то время, в течение которого про­исходит одно колебание (), должно зависеть от свойств воды — вязкости () и поверхностного натяжения (). Кроме того, период должен зависеть и от размера пузыря ( R ). Оказывается, что во всех этих зависимостях дейст­вует самый простой закон «чем — тем»: чем больше вяз­кость — тем больше время, чем больше поверхностное на­тяжение — тем меньше время, чем больше размер — тем больше время. Формула, выражающая эти зависимости, выглядит так:

R /

Эта формула — единственно возможная комбинация вели­чин, от которых зависит , имеющая размерность времени.

Кадры кинофильмов хорошо подтверждают эту законо­мерность. Из кинофильмов мы заимствовали сведения о величинах и R и по формуле вычисляли отношение / . Если теперь из таблиц физических констант заимствовать , можно определить , если заимствовать — можно оп­ределить . И и оказывались вполне разумными.

Был отснят еще один любопытный эпизод, о котором сто­ит рассказать. Кинокамера следила за тем, что происходит, когда пузырек — капля отрицательного дождя — падает на границу раздела между водой и воздухом. События, ко­торые при этом разыгрываются, тоже зависят от размера пузыря. Крупный пузырь вздувается над поверхностью во­ды, при этом большая полусферическая арка из тонкой водяной пленочки оказывается нежизнеспособной и почти мгновенно лопается. Пузырь поменьше оказывается более жизнеспособным: хорошо видно, как постепенно меняется его форма, пока не становится равновесной. Некоторое время такой пузырь живет, а затем лопается либо вслед­ствие обстоятельств случайных — то ли села на него пы­линка, то ли порвал его слабый ветерок, либо оттого, что жидкость с верхней части пузыря стекла к его подножию. Иная судьба у маленьких пузырьков, образовавшихся на кончике миллиметровой трубки. Прикасаясь к границе раздела, они немного деформируют ее, приклеиваются к ней и, почти полностью находясь в воде, сохраняются на­долго.

И наконец, еще одно наблюдение. Большие пузыри всплы­вают очень быстро, а маленькие движутся

медленно — все, как в настоящем дожде. И, как в настоящем дожде, крупные пузыри — капли — догоняют мелкие и погло­щают их. В этом следует усматривать еще одно основание для того, чтобы пузыри, всплывающие в воде, назвать антидождем. А то, что из капель такого дождя не образу­ются лужи,— аналогии не помеха. Ведь капли настоя­щего дождя на поверхности реки тоже луж не создают ...

«Капля камень долбит»

Известно, что «капля камень долбит» — ив переносном и в прямом смысле слова. В одном крымском селе я видел ле­жавшую у дома под крышей глыбу камня ракушечника, которая на полуметровую глубину была разрезана водяны­ми каплями, падавшими во время дождя с крыши. Жестя­ная крыша оканчивалась ровной кромкой, и продолблен­ная каплями прорезь в камне эту кромку повторяла. В камне попрочнее каплям, возможно, не удалось бы сде­лать такую глубокую прорезь, а ракушечник — хрупкий и сыпучий — поддался, и вода разрезала его почти надвое.

Откуда у жидких, «мягких» капель эта способность дол­бить камень? Впрочем, быть может, это иллюзия, что вода во всех случаях жизни мягкая? Ведь если плашмя упасть на воду, можно убедиться, что она совсем не так уж мяг­ка. А рука, медленно движущаяся в воде, свидетельствует об ином: вода легко расступается, уступая ей место. Одна и та же вода в одном опыте оказывается совсем не мягкой, а в другом — ее мягкость вне сомнений.

Видимо, надо договориться о понятии слова «мягкий», вложить в него определенный физический смысл. Если мы каким-то движущимся предметом прилагаем усилие к некоторому телу и это тело послушно меняет свою форму, успевая следовать за движущимся предметом, мы говорим, что тело «мягкое». Уйдем от общих слов и будем рассуж­дать конкретнее. Пусть «движущийся предмет» — наша рука, а «некоторое тело» — вода. Если рука движется в воде медленно — вода мягкая, если же быстрым движени­ем ударить рукой по воде — ощущается боль, несовмести­мая с представлением о мягкости. Все дело в том, как успе­вает вода следовать за движением руки. Вода имеет вяз­кость, и поэтому скорость ее реакции на движущуюся руку ограничена, она не успевает следовать за «быстрой» рукой, препятствует ее движению, и в этом случае ощущение мяг­кости воды исчезает: в момент удара по ней она ведет себя подобно твердому телу.

Вернемся к каплям, падающим с крыши на глыбу ра­кушечника, что лежит под ней.

Попробуем разобраться, что происходит с каплей, па­дающей на твердую поверхность. Вначале — о силе удара или, лучше, о давлении па поверхность, возникающем вследствие удара капли о нее. Чтобы это давление оце­нить, удобно представить себе не летящую каплю, а ци­линдрическую струю, которая на своем пути встречает поверхность твердого тела. В оценке, которую мы полу­чим, характеристики формы струи нет, поэтому она будет годна и для капли.

При внезапном столкновении струи с преградой послед­няя испытывает на себе действие так называемого гидроди­намического удара. За этим научным термином стоит, в сущности, простое физическое явление: в момент столкно­вения струи с преградой в струе в направлении, противо­положном ее движению, начинает распространяться волна торможения. Наглядную иллюстрацию этому дал профес­сор Г. И. Покровский в своей книге «Гидродинамичес­кие механизмы». Он обратил внимание па внешнюю ана­логию между заторможенной струей и потоком автома­шин, внезапно остановленным вспышкой красного света: у светофора возникает скопление машин, которое будет распространяться прочь от светофора, навстречу затормо­женному потоку. Следует подчеркнуть, что сигнал о том, что поток автомобилей заторможен, движется со скоростью, меньшей скорости их движения, а волна торможения в струе движется со скоростью звука в воде, которая равна с = 1,5 •105 см/сек. и, конечно же, больше скорости капли, падающей с крыши.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Курсант: Назад в СССР 11

Дамиров Рафаэль
11. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 11

Варлорд

Астахов Евгений Евгеньевич
3. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Варлорд

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

Измена. Испорченная свадьба

Данич Дина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Измена. Испорченная свадьба