Капля
Шрифт:
Рк = F к / s и Рс = Fс / s .
Очевидно, Fк = тк. g ,а F с = тс. ,
Считая, что средняя скорость струи cp = /2 , можно записать, что
тк = /2. s , а тс = sh .
Вот теперь, приравнивая Рк и Рс , получим:
(2 h / g) 1/2
В наших опытах h = 20 см и, следовательно, должно бы равняться —10– 1 сек. В действительности оказывается немного большим, видимо, из-за того, что набухшая капля не свободно падает, а стекает вдоль струи, испытывая при этом трение о нее. А вот следующее из формулы предсказание, что ~ h 1/2 , когда увеличение длины струи, к примеру, в 4 раза должно увеличить время между двумя приседаниями вдвое, — оправдывается.
Вторая кинограмма. Эта кинограмма отражает изменения, которые происходят с концом распадающейся струи, по мере того как возрастает напряженность электрического поля Е . Отчетливо видно, что на конце струи вместо приседающей капли формируется густая щеточка, фонтанчик мелких капель, разлетающихся в разные стороны. С ростом напряженности щеточка становится более широкой, и точка на струе, где начинается ее разветвление, приближается к нижнему электроду. Расстояние между этой точкой и электродом обозначим l — далее оно нам понадобится. Когда напряженность достигла ~ 2000 в/см, практически вся струя начиная от места выхода ее из стеклянного наконечника (он был немного выше нижнего электрода) превращалась в ветвистый фонтан из мелких капель.
Почему? Почему ранее, при небольшой напряженности поля, мелкие капли объединялись в крупную, а при большой напряженности они сочли для себя целесообразным дробиться на еще более мелкие и разлетаться во все стороны сверкающим фонтанчиком? Или, иными словами, почему в сильном электрическом поле капля на кончике струи утрачивает устойчивость и разрывается на множество мелких?
Разрыв капли происходит под влиянием электрического растягивающего давления Ре . Оно побеждает лапласовское, которое, сжимая каплю, стремится сохранить
Электрическое давление, возникающее в электрическом поле, подобно тому, которое разрывает тяжелые атомные ядра, обладающие большим зарядом. Отличие лишь в том, что заряженное ядро находится в поле, которое создано его собственным зарядом, а дробящаяся водяная капля находится в поле, созданном и поддерживаемом внешним источником.
После сказанного легко оценить величину электрического давления. Имея в виду каплю радиуса R , несущую заряд q , можно определить силу, которая разрывает каплю,
В этой формуле все разумно: напряженность электрического поля, необходимая для разрыва струи, оказывается тем больше, чем меньше размер капли и чем больше величина поверхностного натяжения, сжимающего ее. Однако, чтобы эту формулу сопоставить с результатами опыта, необходимо учесть, что напряженность Ек отличается от Е0 — напряженности между пластинами конденсатора. Так как вблизи капли, сидящей на струе, силовые линии поля сгущаются, Ек будет больше, чем Е0.
Расчет показывает, что Ек = Е0 . Удобнее эту формулу переписать в виде:
Последняя формула естественно объясняет понижение точки, в которой начинается распад капель, с ростом напряженности :
l 1/ E o
Получается своеобразный высоковольтный вольтметр. С его помощью можно определить напряженность, измерив расстояние l.
Вот теперь, пожалуй, опыт Рэлея — Френкеля понят, и обе кинограммы истолкованы.
Кто творит радугу?
Радугу творят водяные капли: в небе — дождинки, на поливаемом асфальте — капельки, брызги от водяной струи. Радугу могут сотворить и капли-росинки, которыми осенним утром покрыта низко скошенная трава.
Вначале поговорим о «геометрии» радуги, т. е. о форме и расположении разноцветных дуг, а затем — о «физике» радуги, о том, какие физические законы определяют ее форму и цвета.
«Геометрия радуги» в небе описана давным-давно. Обычно в небе видны две разноцветные концентрические дуги — одна яркая, а другая побледнее. Каждая дуга является честью окружности, центр которой лежит на прямой, проведенной через солнце и глаз наблюдателя. Эта прямая — своеобразная ось, и вокруг нее изогнута радуга. Глаз наблюдателя оказывается в вершине конусов, в основании которых — разноцветные дуги. Образующие этих конусов с осью соответственно составляют углы 42 и 51°. Солнце светит из-за спины наблюдателя, и, чем ниже оно опускается к горизонту, тем выше поднимается вершина радуги. В тот момент, когда солнце касается горизонта, можно увидеть полукруглую радугу — большей она никогда не бывает. Если же солнце поднимется над горизонтом бо лее чем на 42°, вершина яркой радуги уйдет за горизонт.