Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления
Шрифт:
«Задачи для развития молодого ума» – замечательный документ, представляющий собой наибольший сборник головоломок времен Средневековья, а также первый текст на латыни, содержащий оригинальный математический материал. (Римляне строили дороги, акведуки, общественные бани и системы канализации, но не занимались математикой.) А начинается сборник с шутливой задачи:
Ласточка приглашает улитку на обед, для чего той нужно преодолеть расстояние в одну лигу [4] . Если улитка будет передвигаться по одному дюйму в день, то сколько времени ей понадобится, чтобы добраться до места назначения?
4
Лига –
Ответ – 246 лет и 210 дней. Улитка умерла бы более чем за два столетия до конца пути.
Еще одна головоломка звучит так:
Один человек, встретив нескольких учеников, спросил их: «Сколько детей учится в вашей школе?» Один из учеников ответил: «Я не хочу говорить вам прямо, но скажу, как это можно определить. Удвойте количество учеников, затем увеличьте это число в три раза, после чего разделите его на четыре части. Если вы прибавите меня к одной из этих четвертей, получится 100». Сколько учеников в этой школе?
Маленькие умники! Оставляю эту головоломку вам для самостоятельного решения.
Шутливые формулировки Алкуина звучали новаторски. Впервые юмор использовался для того, чтобы заинтересовать учеников арифметикой. Однако важность сборника «Задачи для развития молодого ума» обусловлена не только новаторской стилистикой, но и тем, что он включал задачи новых типов. Некоторые из них требовали дедуктивных рассуждений при полном отсутствии вычислений. Наиболее известная головоломка Алкуина считается самой знаменитой математической загадкой всех времен.
Человек приходит на берег реки с волком, козой и несколькими кочанами капусты. Ему нужно переправиться через реку, но в единственной имеющейся лодке одновременно может поместиться только он сам и что-то одно из того, что у него есть. Оставить волка с козой или козу с капустой нельзя, поскольку в обоих случаях что-то будет съедено. Как человеку перебраться на другой берег реки за минимальное количество переправ?
Эта головоломка замечательна по двум причинам. Во-первых, ситуация довольно комична. Вы все утро тащились по грунтовой дороге, отчаянно пытаясь не подпускать волка к козе, а козу к капусте. А дальше – еще хуже: вам предстоит переправиться через реку в небольшой лодке. И все же самым забавным и интересным в этом сценарии я считаю само решение задачи, которое заставляет человека действовать вопреки вашим ожиданиям.
Попытайтесь решить эту головоломку. В одной книге XIII века сказано, что это под силу даже пятилетнему ребенку. Или порассуждайте вместе со мной.
Предположим, путешественник находится на левом берегу реки. Изначально у него есть три объекта, из которых он может взять с собой в лодку всего один. Если он возьмет волка, коза останется с капустой и съест ее. Если возьмет капусту, волк съест козу. Методом исключения приходим к выводу, что во время первой переправы через реку путешественник может взять с собой только козу, поскольку волк не ест капусту. Наш герой переправляет козу на правый берег и возвращается за следующим объектом.
Теперь путешественнику предстоит сделать выбор между волком и капустой. Допустим, он решает взять капусту и переправляется через реку в третий раз. Он добрался до правого берега, но не может оставить капусту с козой. Что же ему делать? Он ничего не добьется, вернувшись на левый берег с капустой, поскольку только что ее перевез. Значит, ему придется вернуться с козой. Этот шаг противоречит здравому смыслу: для того чтобы путешественник переправил
После четырех переправ на левом берегу находятся волк и коза, и путешественник привязывает козу, в пятый раз отправляясь через реку, на сей раз с волком. Волк, перевезенный на правый берег, по-прежнему не посягает на капусту. Остается совершить последнее путешествие на левый берег, чтобы забрать бородатое жвачное животное, – и наш герой справляется с задачей за семь переправ.
(Существует и второе, эквивалентное решение: во время второй переправы взять с собой волка. Далее действует та же логика, и человек благополучно переправляется на другой берег со всем своим скарбом за семь переправ.)
В сборнике «Задачи для развития молодого ума» есть и другие задачи о переправе через реку вроде представленной ниже, напоминающей сюжет альковного фарса.
Ответ
Итак, троим мужчинам, у каждого из которых есть сестра, предстоит переправиться через реку. Все мужчины испытывают влечение к чужим сестрам. У реки стоит маленький паром, который может перевезти за один раз только двоих. Определите (если сможете), как всем героям переправиться через реку таким образом, чтобы ничья сестра не была обесчещена, оказавшись в лодке наедине с мужчиной, который не является ее братом.
Вы можете интерпретировать эту задачу двумя способами, поскольку формулировка Алкуина допускает двоякое толкование. Не вызывает сомнений лишь наличие трех пар, состоящих из брата и сестры, которые должны переправиться через реку, имея в своем распоряжении двухместную лодку. Однако в задаче может быть одно из двух ограничений.
Первое: в лодке не должны находиться мужчина и женщина, не связанные родством. В этом случае вся компания переберется на другой берег за девять переправ.
Второе: женщине нельзя находиться в лодке без сопровождения брата в тот момент, когда лодка высаживает или забирает пассажиров на том берегу, где есть другие мужчины. На мой взгляд, второй сценарий больше соответствует духу задачи, а ее решение в этом случае требует одиннадцати переправ. Попытайтесь найти оба варианта.
Задачи о переправе радуют детей и взрослых вот уже более тысячи лет. Распространяясь по миру, они менялись в соответствии с местной спецификой. В Алжире волк, коза и капуста превратились в шакала, козу и вязанку сена; в Либерии это гепард, птица и рис, а в Занзибаре – леопард, коза и листья. Задача о трех друзьях и их сестрах тоже преобразилась с течением времени: распутные мужчины вскоре стали ревнивыми мужьями, запрещающими своим женам путешествовать в одной лодке с другим мужчиной. В одном пересказе XIII столетия у пар были имена: Бертольдус и Берта, Герардус и Грета, Роландус и Роза. Решение представлено в виде двух гекзаметров [5] . (Если вы умеете читать на латыни, переведите для других; примерный перевод дается в ответах.)
5
Гекзаметр (от греч. hex – шесть и metron – мера) – шестистопный дактиль, стихотворный размер в античном стихосложении. Прим. пер.