Катастрофы в природе и обществе
Шрифт:
Обозначим фазовую функцию, соответствующую периодическому загрязнению, через g(x). Оказывается, что если известна фазовая функция для однократного загрязнения f(x), то можно найти по ней функцию g(x). В самом деле, измерим концентрацию загрязнения 31 декабря текущего года, непосредственно перед полуночью; пусть она будет равна x. Величину концентрации от выброса в 0 часов 1 января, рассматриваемую сразу же после выброса, до начала деструкции, обозначим через d0; это, наряду с периодом выбросов в один год, основная информация о вредной деятельности предприятия. Таким образом, общая концентрация в среде сразу же после выброса будет x + d0. В течение следующего года, который мы будем считать годом наблюдения, это количество будет разрушаться без дальнейшего прибавления загрязнителя – до момента
g(x) = f(x + d0).
Полученная функция g(x) связана c f(x) очень простым преобразованием – "сдвигом" графика на величину d0: это значит, что значение функции g в точке x равно значению функции f в точке x + d, cдвинутой вправо на d0 (см. рис.3). Но тогда график функции g получается из графика f сдвигом влево на ту же величину d0.
Рис.3
Итак, доказана следующая теорема:
Фазовая функция периодического загрязнения задается выражением
g(K) = f(K + d0),
где f(K) – фазовая функция деструкции в рассматриваемой среде, а d0 – концентрация от однократного выброса, рассматриваемого предприятия сразу же после выброса.
Зная график f(K) (рис.1), можно получить из него график g(K) сдвигом влево на величину d0, причем значения g(K) для отрицательных K, не имеющие смысла, отбрасываются (в доказательстве теоремы исходная концентрация x в начале наблюдения считалась неотрицательной). Дальше мы рассмотрим, какой вид имеет "сдвинутая" кривая M = g(K).
Для применения предыдущей теоремы надо знать фазовый портрет M = f(K) однократного загрязнения, который можно измерить по одному выбросу, достаточно массивному, чтобы доставить большое значение исходной концентрации и, тем самым, найти вид кривой рисунка 1 при больших K. Как уже было сказано, такие выбросы происходят обычно в случае катастроф, последствия которых изучались. Таким образом, из несчастий, не делающих чести человеческому разуму, можно вывести информацию об экологическом ущербе от "нормально" действующих предприятий. [Заметим, что общий случай выбросов переменной массы можно свести к случаю однократного выброса, используя по существу только что описанный метод, то есть складывая концентрации, оставшиеся после деструкции от всех предшествующих выбросов. Для этого надо выполнить хорошо известное в математической физике сведение непрерывных процессов к "дискретным", то есть происходящим в отдельные моменты]
Подвергнем теперь кривую M = f(K) рисунка 1 преобразованию сдвига, о котором говорится в предыдущей теореме. Как легко убедиться, получается левая кривая рисунка 4 (рассматриваемая лишь при положительных значениях K). Бросается в глаза, что эта фазовая кривая имеет устойчивую точку равновесия 1, на пересечении с биссектрисой: вспомните исследование фазовых кривых в главе 1! Впрочем, мы займемся таким исследованием дальше.
Рис.4
Рассмотрим теперь случай, когда предприятие производит равномерные выбросы все время. В этом случае надо знать, кроме фазового портрета деструкции (рис.1), еще концентрацию сразу же по истечении первого года работы предприятия, которую мы обозначим через d1. Ее можно приближенно отождествить со "среднегодовым выбросом" предприятия, то есть с суммой концентраций, возникающих сразу же после небольших периодов работы предприятия. Такое отождествление неточно, так как к концу года часть более ранних выбросов за этот год успевает разрушиться. Все же мы будем условно называть эту величину d1 "среднегодовым выбросом", имея в виду предыдущее определение.
Пусть теперь в начале года концентрация, оставшаяся от всей предыдущей деятельности
Фазовая функция непрерывного загрязнения задается выражением
g(K) = f(K) + d1,
где f(K) – фазовая функция деструкции в рассматриваемой среде,
а d1 – среднегодовой выброс предприятия.
Каждое значение функции g больше соответствующего значения функции f на одно и то же число d1, что соответствует "подъему" графика на величину d1 (рис.5).
Рис.5
Если фазовая кривая деструкции от однократного загрязнения имеет вид, изображенный на рисунке 1 (о чем имеются убедительные данные), то, подняв этот график на величину d1, мы получим фазовую кривую непрерывного загрязнения, которая будет изучена дальше.
Как мы видели, в условиях постоянно действующего предприятия фазовый портрет концентрации загрязнения получается из фазового портрета однократного загрязнения одной из двух процедур: в случае периодического загрязнения – сдвигом влево на d0, в случае непрерывного загрязнения – подъемом вверх на d1. Результаты, которые получаются для фазовой функции g(x), в обоих случаях сходны. Мы проведем исследование, для определенности, во втором случае, предоставив читателю рассмотреть аналогичным образом первый.
При подъеме на d1 левый конец кривой M = f(K), находящийся в начале координат, поднимается в точку (0,d1) и оказывается таким образом выше биссектрисы координатного угла. С другой стороны, при больших значениях K кривая M = f(K) совпадает с прямой M = c1K, где 0 < c1 < 1. Следовательно, наклон этой прямой к оси K меньше 450, и эта прямая, а вместе с ней и фазовая кривая при больши'х K, лежит ниже биссектрисы. Для промежуточных значений K возможны разные случаи.
(1) Кривая M = f(K) + d1 пересекает биссектрису в единственной точке 1 (рис.6) в направлении сверху вниз. Из прямого геометрического рассмотрения рисунка 1 ясно, что так обстоит дело при не слишком больших значениях d1, когда точки кривой, далекие от биссектрисы в начале подъема, не успевают до нее подняться. При этом получается верхняя кривая, изображенная на рисунке 6.
Прием отражения в биссектрисе, выработанный в главе 1, показывает, что на этой кривой есть единственная точка устойчивого равновесия – точка 1; обозначим ее абсциссу через K1. Точка фазовой кривой P0 c абсциссой K0 при K0 < K1 движется вправо, и через некоторое число шагов, соответствующих в нашей условной хронологии годам, подойдет сколь угодно близко к точке 1. Если же исходное значение K0 > K1, то точка фазовой кривой движется влево, к той же точке 1. Итак, точка 1 изображает состояние среды с установившейся концентрацией загрязнения K1. Поскольку фазовая кривая больше нигде не пересекает биссектрисы, других точек устойчивой концентрации нет. Насколько велика концентрация K1, зависит от формы кривой деструкции M = f(K) и от значения среднегодовой концентрации d1. По этим данным, как мы увидим, можно заранее предсказать устойчивую концентрацию K1, а, следовательно, решить, будет ли терпимо предприятие с таким загрязнением, и если надо, отказаться от его постройки или закрыть его.