Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Илл. 1.12. (а) Структура телефонной системы; (б) Предложение Бэрана

В начале 1960-х Минобороны заключило с корпорацией RAND контракт на поиск решения этой проблемы. Один из сотрудников компании, Пол Бэран (Paul Baran), разработал сильно распределенную и отказоустойчивую архитектуру, изображенную на илл. 1.12 (б). Длина пути между любыми двумя коммутационными станциями теперь значительно превышала расстояние, которое аналоговые сигналы могут проходить без искажений. Поэтому Бэран предложил использовать цифровую технологию коммутации пакетов. Бэран написал несколько

отчетов для Минобороны, в которых подробно описал свои идеи (Baran, 1964). Представители Пентагона оценили его концепцию и предложили компании AT&T (на тот момент монополиста в сфере телефонных услуг в США) создать опытный образец системы. AT&T сразу же отмели идеи Бэрана. Крупнейшая и богатейшая корпорация в мире не собиралась позволять какому-то выскочке из Калифорнии6 (AT&T тогда базировались на Восточном побережье США) указывать ей, как выстраивать телефонную систему. В компании заявили, что сеть Бэрана в принципе нереализуема, и идея была загублена на корню.

Прошло несколько лет, а у Минобороны все еще не было улучшенной системы командования и управления. Чтобы понять, что произошло далее, придется вернуться в октябрь 1957-го, когда СССР победил США в космической гонке, запустив первый искусственный спутник Земли. Когда президент США Дуайт Эйзенхауэр попытался выяснить, чей это был недосмотр, он был шокирован тем, как армия, ВМС и ВВС пререкались из-за бюджета Пентагона на исследования. Эйзенхауэр немедленно создал единую организацию для исследований в оборонной сфере, ARPA (Advanced Research Projects Agency — Управление перспективных исследовательских проектов). У ARPA не было своих ученых или лабораторий; фактически оно представляло собой один офис с маленьким (по меркам Пентагона) финансированием. Его работа состояла в распределении грантов и контрактов университетам и компаниям, предлагавшим многообещающие идеи.

В первые несколько лет ARPA занималось поиском своей миссии. В 1967 году Ларри Робертс (Larry Roberts), руководитель проектов в ARPA, пытавшийся найти способ предоставления удаленного доступа к компьютерам, обратил свое внимание на сетевые технологии. Он связался с несколькими экспертами в этой области, чтобы определить порядок действий. Один из них, Уэсли Кларк (Wesley Clark), предложил построить подсеть с коммутацией пакетов, в которой каждый хост был бы связан со своим маршрутизатором.

Поначалу Робертс был настроен скептически, но в конце концов принял эту идею. Он представил несколько туманный доклад на симпозиуме по операционным системам ACM SIGOPS, проводившемся в Гатлинбурге, штат Теннесси, в конце 1967 года (Roberts, 1967). К большому удивлению Робертса, на конференции был представлен еще один доклад, описывающий аналогичную систему. Эта система была не только спроектирована, но и полностью реализована под руководством Дональда Дэвиса (Donald Davies) из Национальной физической лаборатории (NPL) Великобритании. Созданная в NPL система не охватывала всю страну, а всего лишь соединяла несколько компьютеров на территории NPL. Тем не менее это убедило Робертса в принципиальной реализуемости идеи коммутации пакетов. Кроме того, в упомянутом докладе цитировалась более ранняя забракованная работа Бэрана. Робертс уехал из Гатлинбурга с твердым намерением создать то, что позднее получило название ARPANET.

Согласно разработанному им плану, подсеть состояла из мини-компьютеров IMP (Interface Message Processors — обработчики сообщений интерфейсов), соединенных самыми современными на тот момент 56-килобитными линиями передачи. Для повышения надежности каждый IMP соединялся по крайней мере с двумя другими IMP. Все отправляемые через подсеть пакеты содержали полный адрес получателя, так что в случае уничтожения части линий связи и IMP следующие пакеты автоматически перенаправлялись бы по альтернативным путям.

Каждый узел сети представлял собой находящиеся в одном помещении IMP и хост, соединенные

коротким кабелем. Хост мог отправлять своему IMP сообщения размером до 8063 бит. Затем IMP разбивал информацию на пакеты максимум по 1008 бит и по отдельности направлял их в пункт назначения. Перед дальнейшей отправкой каждый пакет нужно было получить полностью. Таким образом, эта подсеть стала первой электронной сетью с промежуточным хранением данных и коммутацией пакетов.

Далее ARPA объявило тендер на создание подсети и получило заявки от 12 компаний. После оценки всех предложений победила консалтинговая компания BBN (Кембридж, штат Массачусетс). В декабре 1968 года ARPA заключило с BBN контракт на разработку подсети и написание для нее программного обеспечения. В качестве IMP были выбраны специально модифицированные мини-компьютеры Honeywell DDP-316 с 12K 16-битных слов памяти на магнитных сердечниках. У этих IMP не было дисков, поскольку наличие движущихся частей сочли понижающим надежность. IMP соединялись между собой 56-килобитными линиями связи, арендованными у телефонных компаний. Сегодня скорость в 56 Кбит/с используется разве что в сельской местности, но тогда это было лучшее из возможного.

Программное обеспечение было разбито на две части: ПО подсети и ПО хоста. ПО подсети состояло из конечного IMP в соединении между хостом и IMP, протокола IMP — IMP и протокола для взаимодействия, передающего и принимающего IMP, созданного для повышения надежности. Первоначальная архитектура ARPANET приведена на илл. 1.13.

Вне подсети также требовалось программное обеспечение, а именно конечный хост в части соединения хоста с IMP, протокол хост — хост, а также прикладное ПО. Вскоре стало понятно, что BBN полагали, что их работа была выполнена, как только сообщение на линии хост — IMP было получено и передано в пункт назначения.

Однако для хостов также требовалось программное обеспечение. Для решения этой проблемы Робертс организовал встречу исследователей сетей (в основном аспирантов) в Сноуберде, штат Юта, летом 1969-го. Участники собрания ожидали, что какой-нибудь эксперт представит грандиозный проект по созданию сети, опишет нужное программное обеспечение, после чего распределит между ними работу. Они с удивлением обнаружили, что никакого эксперта, как и проекта, нет. Им нужно было самим разобраться, что делать.

Илл. 1.13. Первоначальная архитектура ARPANET

Тем не менее в декабре 1969-го удалось запустить экспериментальную сеть, состоящую из четырех узлов: Калифорнийский университет в Лос-Анджелесе (UCLA), Калифорнийский университет в Санта-Барбаре (UCSB), Стэнфордский исследовательский институт (SRI) и Университет Юты. Эти четыре узла были выбраны, поскольку все они имели значительное количество контрактов с ARPA. Кроме того, их хост-компьютеры были совершенно несовместимы (что делало задачу более интересной). Первое сообщение между хостами было отправлено двумя месяцами ранее из узла UCLA в узел SRI группой под руководством Лена Клейнрока (Len Kleinrock), одного из первопроходцев теории коммутации пакетов. Сеть быстро росла по мере доставки и установки дополнительных IMP, и вскоре она полностью охватила Соединенные Штаты. На илл. 1.14 представлен стремительный рост ARPANET за первые три года.

ARPA не только помогала расти только что созданному ARPANET, но и спонсировала исследования в области спутниковых сетей и мобильных сетей пакетной радиосвязи. В знаменитом ныне эксперименте ехавший по Калифорнии грузовик с помощью пакетной радиосети передавал сообщения в SRI, которые отправлялись далее через ARPANET на Западное побережье, а затем в Университетский колледж Лондона по спутниковой сети. Таким образом находящийся в грузовике исследователь мог использовать лондонский компьютер во время поездки по Калифорнии.

Поделиться:
Популярные книги

Теневой путь. Шаг в тень

Мазуров Дмитрий
1. Теневой путь
Фантастика:
фэнтези
6.71
рейтинг книги
Теневой путь. Шаг в тень

Тринадцатый VI

NikL
6. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый VI

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Искатель 2

Шиленко Сергей
2. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 2

Неласковый отбор Золушки-2. Печать демонов

Волкова Светлана
2. Попала в сказку
Любовные романы:
любовно-фантастические романы
7.29
рейтинг книги
Неласковый отбор Золушки-2. Печать демонов

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Отверженный VIII: Шапка Мономаха

Опсокополос Алексис
8. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VIII: Шапка Мономаха

Мастер 9

Чащин Валерий
9. Мастер
Фантастика:
боевая фантастика
попаданцы
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Мастер 9

Первый среди равных. Книга VII

Бор Жорж
7. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Первый среди равных. Книга VII

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Тайные поручения

Билик Дмитрий Александрович
6. Бедовый
Фантастика:
юмористическое фэнтези
городское фэнтези
мистика
5.00
рейтинг книги
Тайные поручения

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Ваше Сиятельство 10

Моури Эрли
10. Ваше Сиятельство
Фантастика:
боевая фантастика
технофэнтези
фэнтези
эпическая фантастика
5.00
рейтинг книги
Ваше Сиятельство 10