Концепции современного естествознания: Шпаргалка
Шрифт:
5. ГРАВИТАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ
Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальным законом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения описывается, например, движение планет Солнечной системы, а также других макрообъектов. Предполагается, что гравитационное взаимодействие обусловлено
Гравитационное взаимодействие – самое слабое, не учитываемое в теории элементарных частиц, поскольку на характерных для них расстояниях ~10– 13 см оно дает чрезвычайно малые эффекты. Однако на ультрамалых расстояниях (~10– 33 см) и при ультрабольших энергиях гравитация приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. В космических масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.
От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. Ядерные реакции, связанные с сильными взаимодействиями, происходят в течение 10– 24– 10– 23 с. Приблизительно это тот кратчайший интервал времени, за который частица, ускоренная до высоких энергий, когда ее скорость близка к скорости света, пролетает расстояние ~10– 13 см. Изменения, обусловленные электромагнитными взаимодействиями, осуществляются в течение 10– 21– 10– 19 с, а слабыми (например, распад элементарных частиц) – в основном в течение 10– 10 с. По времени различных превращений можно судить о силе связанных с ним взаимодействий.
6. ЗАКОНЫ НЬЮТОНА
В качестве первого закона Ньютон (1643–1727) принял закон инерции, открытый еще Г. Галилеем
(1564–1642): тело (материальная точка), не подверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно. Такое тело называется свободным, а его движение – свободным или движением по инерции. Первый закон Ньютона – Галилея фактически постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. Такая система называется инерциальной системой отсчета. Под системой отсчета понимается совокупность тела отсчета, системы координат и часов.
Второй закон Ньютона: ускорение движущегося тела прямо пропорционально действующей на него силе, обратно пропорционально массе тела и направлено по прямой, по которой эта сила действует, т. е.
где a – ускорение тела; F – сила; m – масса тела.
Сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного и прямолинейного движения. Масса тела выступает как коэффициент пропорциональности между силой, действующей на тело, и ускорением (F = ma) и характеризует инертность тела, т. е. степень неподатливости изменению состояния движения.
Третий закон Ньютона: силы взаимодействия двух материальных точек равны по величине, противоположно направлены и действуют вдоль прямой, соединяющей эти материальные точки, т. е.
где F12 –
Выдающейся заслугой Ньютона было открытие закона всемирного тяготения: два точечных тела притягивают друг друга с силой, прямо пропорциональной произведению их масс, обратно пропорциональной квадрату расстояния между ними и направленной вдоль соединяющей их прямой, т. е.
где = 6,7 10– 11 м3/(кг • с2) – гравитационная постоянная; m1 и m2 – массы тел; r – расстояние между телами.
7. ПРИНЦИПЫ ОТНОСИТЕЛЬНОСТИ ГАЛИЛЕЯ
Во всех инерциальных системах отсчета законы классической механики (законы Ньютона) имеют одинаковую форму; в этом сущность механического принципа относительности – принципа относительности Галилея. Он означает, что уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. инвариантны по отношению к преобразованиям координат.
x' = x – vt, y' = y, z' =z, t' = t,
где x, y, z и t; x', y', z' и t'– координаты тела и время в неподвижной и подвижной системах отсчета соответственно; v – скорость подвижной системы отсчета.
Эти формулы называются преобразованиями Галилея.
Легко показать, что законы динамики Ньютона инвариантны относительно преобразований Галилея. Это объясняется тем, что силы и массы тел одинаковы во всех инерциальных системах отсчета и ускорения тел, которые определяются двойным дифференцированием координат по времени, также одинаковы
(a = d2x/dt2 = d2x'/dt2 = a').
Инвариантами, т. е. величинами, численное значение которых не изменяется при преобразовании координат по Галилею, являются длины и интервалы времени. Покажем это.
Пусть в подвижной системе координат находится неподвижный стержень, координаты концов которого (x'1, y1', z'1) и (x'2, y'2, z'2). Это означает, что длина стержня в подвижной системе