Чтение онлайн

на главную - закладки

Жанры

Концепции современного естествознания: Шпаргалка
Шрифт:

Aконс = U1U2 = –U. (2)

Тогда, подставляя (2) в (1), получим

K + U = (K + U) = Aнеконс. (3)

Из анализа формулы (3) следует, что работа неконсервативных сил идет на приращение суммы кинетической

и потенциальной энергий частицы, которую называют полной механической энергией и обозначают буквой E, т. е.

E= K + U. (4)

Итак, из (3) и (4) следует, что приращение полной механической энергии частицы на конечном перемещении из точки 1 в точку 2 равно работе неконсервативных сил:

E = E2E1 = Aнеконс, (5)

где E1 и E2 – полные механические энергии частицы в точках 1 и 2 соответственно.

Формула (5) выражает закон изменения полной механической энергии частицы: приращение полной механической энергии частицы на некотором пути равно алгебраической сумме работ всех неконсервативных сил, действующих на частицу на том же пути.

Если Анеконс > 0, то полная механическая энергия частицы увеличивается, если же Анеконс < 0, то уменьшается.

Из закона изменения полной механической энергии частицы следует закон сохранения этой величины: если на частицу не действуют неконсервативные силы или работа неконсервативных сил на любом перемещении при переходе частицы из точки 1 в точку 2 равна нулю, то полная механическая энергия частицы сохраняется

(E1 = E2 = E = const), т. е.

E= K + U = const. (6)

Выражение (6), в частности, означает, что если на частицу действуют только консервативные силы, то сохраняется сумма кинетической и потенциальной энергий, однако при этом может происходить превращение потенциальной энергии в кинетическую и наоборот.

Закон сохранения полной механической энергии в форме (6) может быть записан и для системы частиц, не взаимодействующей с внешними телами, при условии, что в системе действуют только консервативные силы. Закон сохранения энергии остается инвариантным (форма его записи остается той же самой) при изменении начала отсчета времени. Это является следствием однородности времени.

16. УРАВНЕНИЕ СОСТОЯНИЯ. НУЛЕВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Законы термодинамики описывают поведение так называемых макроскопических систем, т. е. тел (твердых, жидких или газообразных), состоящих из большого числа частиц. Равновесное состояние макроскопической системы полностью характеризуется небольшим числом физических параметров. Состояние однородных тел полностью фиксируется заданием любых двух из трех величин: давления p, объема V и температуры T. Связь между p, V и Tхарактерна для каждого твердого тела, жидкости или газа, она называется уравнением состояния. Например, для идеального газа массы m уравнением состояния является уравнение Клапейрона – Менделеева:

pV = vRT,

где v = m/ –

число молей газа массой m ( – молярная масса); R = 8,31 Дж/(К моль) – универсальная газовая постоянная.

В основе термодинамики лежат фундаментальные законы (начала), которые являются обобщением многочисленных наблюдений и выполняются независимо от конкретной природы образующих систему тел. Поэтому закономерности в соотношениях между физическими величинами, к которым приводит термодинамика, носят универсальный характер. Обоснование законов термодинамики, их связь с законами движения частиц, из которых построены тела, дается статистической физикой, задачей которой является выражение свойств макроскопических тел, т. е. систем, состоящих из большого количества частиц (молекул, атомов, электронов и т. п.), через свойства этих частиц и их взаимодействия.

Необходимым условием термодинамического равновесия в системе является равенство значений температуры для всех частей системы. Существование температуры – параметра, единого для всех частей системы, находящейся в термодинамическом равновесии, иногда называют нулевым началом термодинамики.

17. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Существуют два принципиально разных способа изменения внутренней энергии системы: первый связан с работой системы по перемещению окружающих тел (или работой этих тел над системой), второй – с сообщением системе теплоты (или с отводом ее) при неизменном расположении окружающих тел (или с работой на микроуровне, совершаемой молекулами одного тела над молекулами другого тела при их соприкосновении).

Первое начало термодинамики утверждает, что количество теплоты (тепла) dQ, сообщенное системе, идет на увеличение ее внутренней энергии dU и на совершение системой работы dA, т. е.

dQ = dU + dA.

Если система совершает термодинамический цикл, т. е. в конечном счете возвращается в исходное состояние, то изменения внутренней энергии не произойдет и полное количество тепла, сообщенное системе на протяжении цикла, будет равно совершенной ею работе.

Первое начало термодинамики представляет собой по сути закон сохранения энергии для систем, в которых существенную роль играют тепловые процессы. Это утверждение эквивалентно утверждению о невозможности создания вечного двигателя 1-го рода. Вечный двигатель 1-го рода – это такая машина, которая, будучи однажды запущена в ход, способна работать неопределенно долго и совершать полезную работу, не потребляя энергии извне. Поскольку ни при каком преобразовании энергии нельзя увеличить ее количество, а полезная работа в этом случае

может совершаться только расходуя внутреннюю энергию системы, то отсюда и следует невозможность создания такого двигателя.

Первое начало термодинамики позволяет определить энергетический баланс любого процесса, но не указывает на направление протекания этого процесса.

Многочисленные опыты показывают, что в отличие от механического движения все тепловые процессы необратимы. Это означает, что если реализуется какой-либо термодинамический процесс, то обратный процесс, при котором система проходит те же термодинамические состояния, но в обратном порядке, практически невозможен. Однако если создать условия, при которых система будет переходить из состояния 1 в состояние 2 бесконечно медленно через последовательность квазиравновесных (почти равновесных) состояний, то такой квазистатический процесс можно считать обратимым.

Поделиться:
Популярные книги

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI

Страж Кодекса. Книга VII

Романов Илья Николаевич
7. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VII

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Гридень. Начало

Гуров Валерий Александрович
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гридень. Начало

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2