Креативный мозг. Как рождаются идеи, меняющие мир
Шрифт:
Рис. 4.3. Основные крупномасштабные сети. (а) Центральная управляющая сеть (ЦУС) включает дорсолатеральную и вентролатеральную части префронтальной коры (ДЛПФК и ВЛПФК) и заднюю теменную кору (ЗТК). (b) Сеть пассивного режима работы мозга (СПР) включает вентромедиальную (ВЛПФК) / орбитофронтальную (ОФ) часть коры, заднюю теменную кору (ЗТК), предклинье и заднюю поясную извилину (ЗПИ). (с) Сеть познавательных и эмоциональных функций (СПЭФ) включает переднюю островковую долю и переднюю поясную извилину (ППИ).
Центральная управляющая сеть и сеть пассивного режима изучаются особенно активно, и часто высказываются предположения о четкой
Образованный человек, не cведущий в нейробиологии, инженер или математик, может быть обеспокоен склонностью современной когнитивной нейробиологии привлекать эти две сети (ЦУС и СПР) для объяснения слишком широкого круга познавательных процессов. Он также может задать вопрос о том, насколько обоснованно сведение всех возможных взаимодействий, которые происходят в богатой матрице миелиновых волокон головного мозга, всего лишь к нескольким сетям, а также предположение о том, что две крупные сети не могут работать параллельно. На самом деле было обнаружено некоторое количество дополнительных, часто перекрывающихся сетей; например, это сеть внимания, сеть языка и лобно-теменная сеть контроля (ЛТСК). Предполагается также, что две последние сети уникальны для человека, а ЛТСК, в частности, отражает закономерность увеличения коры головного мозга в процессе эволюции, особенно заметного в ее лобной и теменной частях12.
И не успели мы осознать, как старый соблазн вновь заявил о себе под новой личиной: стремление к ограниченному (и желательно не очень длинному) списку четко определенных модулей. Время от времени, в 1970-х и 1980-х годах, нейропсихологи сходили с ума от идеи о том, что кора представляет собой коллекцию «модулей», дискретных объектов с жесткими границами и фиксированными функциями. Это было последнее «усилие» своеобразного состояния дел, при котором наука о познании была в основном отделена от нейробиологии, и слияние этих двух наук произошло к концу двадцатого столетия (по большей части благодаря пришествию методов функциональной нейровизуализации). В результате понятие о «модульном составе коры» было заброшено ради более продвинутого понимания организации мозга. Сегодня, несмотря на то что место областей мозга заняли модули, называемые «сетями», распространение этой идеи поражает жутким сходством с расцветом концепции модулей старой школы, который наблюдался несколько десятилетий назад, и оно отражает ту же самую гносеологическую эстетику (которая никогда особо меня не привлекала). По мере увеличения количества предложенных сетей у них проявляется все большее сходство с классической функциональной системой, смонтированной специальным образом в ответ на существующие познавательные требования, заново открытой при помощи функциональной нейровизуализации13. Исходя из того, что в различных исследованиях нейроанатомии в каждой из этих сетей часто обнаруживается что-то иное, также подтверждает тот факт, что попытки свести все эти наблюдения к небольшому количеству «канонических» сетей являются сомнительным упражнением, результат которого нельзя принимать буквально. Вместо уникальных канонических сетей, возможно, более полезно с эвристической точки зрения думать в терминах «сетевых категорий», представляя, что существует, вероятно, столько сетей, сколько позволяет топология длинных нервных путей мозга. Было бы особенно удивительно, если бы господство этого нового бренда модульности следовало тем же курсом, что и старое понятие о «модульности» областей мозга. Тогда «модульность» сетей мозга ослабнет в свое время ради более тонкого понимания14.
Но, даже в самом грубом приближении, макротаксономия сети «достаточно верна» во многих аспектах в соответствии с состоянием дел в современной нейробиологии, и ее в некотором смысле можно использовать для объяснения. Имеет смысл рассматривать такие сети как крупные системы дорог, которые могут проводить самые разные потоки движения и включать специфические подсистемы. Чуть позже мы более подробно рассмотрим каждую из трех часто упоминаемых сетей.
Центральная управляющая сеть (ЦУС)
Эта сеть, также известная как сеть управления познанием, представляет собой сложное объединение областей мозга, которые совместно
Временная динамика в пределах ЦУС проливает свет на взаимоотношения префронтальной коры и задней ассоциативной коры, в которой сложные знания представлены в виде задач, требующих познавательного подхода. Когда ученые изучили порядок, в котором различные компоненты этой сети приходят в активное состояние, стало ясно, что активация внутри сети определяется префронтальной корой15. Сначала активизируется префронтальная кора, а потом другие компоненты ЦУС и участки, которые располагаются в теменных, иногда в височных долях.
Сеть ЦУС может и не быть отличительной особенностью человека. Использование некоторых методов спектроскопии в ближней инфракрасной области и поверхностных потенциалов поля позволило Хоакину Фастеру и его коллегам описать у макак-резусов сеть, анатомически очень близкую к ЦУС, в которой происходит обработка задач оперативной памяти. Для этой сети, объединяющей латеральные префронтальные и задние теменные области, были характерны сложные схемы синхронизации и десинхронизации по времени, частоте и пространству мозга. Это подчеркивает тот факт, что идентификация путей представляет собой только первый шаг к пониманию закономерностей межнейронного сообщения и за этим последует более подробный анализ этих закономерностей16.
Сеть пассивного режима (СПР)
Эта сеть активируется, когда ни одно внешнее задание не запускает познавательные процессы и мозг индивидуума предоставлен самому себе. Иногда такое состояние называется «отрицательно направленным на задачу», но этот термин неверный, поскольку мозг вовсе не бездействует: напротив, вместо того чтобы включаться под воздействием навязанной извне задачи, он занимается заданиями, выбранными внутри и направленными внутрь17.
Мы более подробно рассмотрим сеть СПР в Главе 5, но здесь мы просто сравним две сети – ЦУС и СПР – в отношении их нейроанатомических компонентов. Обе сети сконцентрированы вокруг двух макроскопических хабов: это префронтальная и задняя теменная кора. Их объединенное название – гетеромодальная ассоциативная кора, а их уникальная роль в более сложном познании, обширные связи и особенности работы во взаимодействии были установлены уже довольно давно18. Учитывая это, открытие двух крупномасштабных сетей методами функциональной нейровизуализации стало подтверждением и уточнением хорошо известного, характерного признака функциональной организации коры.
Но пока и ЦУС, и СПР объединяют префронтальную кору и заднюю гетеромодальную ассоциативную кору, их различные участки включены в эту сеть; вот именно это делает их открытие особенно интересным. Самая яркая разница между ЦУС и СПР наблюдается в префронтальной коре. Если в ЦУС активны дорсальная и вентральная части лобной доли, то в СПР активны орбитальная и вентромедиальная части.
Представляется, что задние части ЦУС и СПР частично совпадают, но, тем не менее, между ними есть разница. Обе сети включают гетеромодальную ассоциативную кору задней латеральной теменной доли, но эти участки более интенсивно включены в ЦУС, чем в СПР. И наоборот, СПР включает кору задней части поясной извилины и предклинье (область, которая находится в средней части задней теменной доли), не включенные в ЦУС.
Основываясь на наших знаниях об этих структурах мозга, создается впечатление, что ЦУС обрабатывает информацию о внешнем мире, а СПР – то, что идет изнутри. Обратите внимание, что латеральная поверхность префронтальной коры немного больше в правом, чем в левом полушарии; а орбитофронтальная кора и поясничная извилины (СПР) – наоборот19. Допустим, «чем больше, тем лучше» (грубое, но часто удивительно обоснованное выражение, когда речь заходит о взаимоотношениях структуры и функции в головном мозге); тогда эта асимметрия может служить намеком для выяснения относительной роли двух полушарий в ЦУС и СПР.