Крушение парадоксов
Шрифт:
В долазерную эру оптики имели дело лишь с крайне слабыми полями, и для наблюдения нелинейных явлений приходилось создавать очень чувствительную аппаратуру. Обсуждая эту ситуацию, академик Вавилов, введший в науку термин «нелинейная оптика», писал: «Физики настолько свыклись с линейностью обыденной оптики, что до сих пор нет даже формального строгого математического аппарата для решения реальных «нелинейных» оптических задач».
С появлением лазеров, особенно лазеров с управляемой добротностью резонатора, дающих гигантские импульсы света мощностью в миллиарды ватт, нелинейные явления приобретают большое, иногда решающее значение не только для физики, но и для технических применений. Кстати, именно член-корреспондент Академии наук СССР Рем Викторович Хохлов со своим сотрудником профессором Сергеем Александровичем Ахмановым
В предыдущих абзацах мы уже несколько раз применили выражение «нелинейные явления». Иногда совершенно невозможно избежать научных терминов. Однако специальные термины, в том числе и научные, вовсе не засоряют язык. Наоборот, они делают его проще, яснее и позволяют достичь краткости. Одно-два слова заменяют целую фразу, а иногда и несколько фраз.
Представим себе, например, график движения поезда, идущего с постоянной скоростью. Изображая путь, пройденный им за какое-нибудь время, мы получим прямую линию. Опуская слово «прямая», физик говорит о «линейном законе движения», имея в виду, что пройденный путь пропорционален времени. Если же график изображает путь, пройденный свободно падающим камнем, то мы увидим на нем не прямую, а изогнутую линию. Не вдаваясь в подробности, не уточняя истинной формы этой кривой, физик говорит, что она не прямолинейна. Для краткости он говорит: она нелинейна. Это значит, что путь, пройденный падающим камнем, не пропорционален времени, он связан со временем нелинейной зависимостью.
В воздухе, стекле, воде, в большинстве известных сред путь, пройденный светом, пропорционален времени. Значит, скорость света в таких средах постоянна. Для большинства веществ это верно при всех достижимых интенсивностях света, даже для лучей оптических квантовых генераторов. Но есть небольшое количество кристаллов, в которых скорость света меняется в зависимости от его силы. Более того, эта зависимость изменяется, если меняется направление света по отношению к ребрам кристалла и его граням. Такой закон распространения света естественно назвать нелинейным. Иногда слово «нелинейный» относят к самому кристаллу, имея в виду, что закон распространения света в кристалле отличен от линейного.
В радиотехнике давно применяют нелинейные зависимости тока от напряжения, наблюдающиеся в радиолампах и полупроводниковых приборах. Их используют, например, для умножения частоты. Это значит, что, имея ламповый генератор какой-то определенной частоты, можно, не меняя ничего в генераторе, получить колебания вдвое, или втрое, или даже вдесятеро большей частоты.
Естественно, что после создания оптических квантовых генераторов физики решили получить нечто подобное и в оптике. Ведь до сих пор мощные квантовые генераторы работают только на двух длинах волн — квантовые генераторы с ионами неодима дают инфракрасные волны длиной около одного микрона, и рубиновые генераторы с ионами хрома излучают красный свет длиной около 0,69 микрона. Между тем, удвоив частоту неодимового генератора, то есть уменьшив его волну вдвое — до 0,5 микрона, можно получить зеленый свет. А утроить его частоту — значит получить ультрафиолетовые лучи длиной в 0,33 микрона. И не какие-нибудь лучи, а почти идеальные! Лазер рождает лазер!
Аналогичный результат дает умножение частоты рубинового генератора. Его вторая гармоника попадает в фиолетовую часть спектра, а третья дает жесткие ультрафиолетовые лучи.
Пропуская луч квантового генератора через специально выращенные кристаллы, Франкен и его сотрудники первыми смогли зарегистрировать появление излучения удвоенной частоты. Однако коэффициент преобразования был очень мал. Лишь ничтожная доля энергии падающей волны превращалась в энергию волны удвоенной частоты. Хохлов и его сотрудники глубоко проанализировали новое явление и поняли, что причина лежит в различии скоростей обеих волн. В результате, действия различных участков кристалла не складываются, а даже частично уничтожаются. Но уравнения подсказали Хохлову выход из положения. Оказывается, в кристалле можно найти направления, в которых падающая волна и волна с умноженной частотой бегут с такими скоростями, при которых все точки работают согласованно и результаты
Перечитав предыдущий абзац, я увидела, что прошла мимо самого интересного. В нем все верно. Да, уравнения подсказали! Но, пока они не написаны, эта фраза лишена истинного смысла. А писать уравнения в такой вот научно-художественной книге не принято. Вернувшись еще немного назад, я прочитала: «в радиотехнике давно применяют...», «физики решили...» Как все просто звучит.
На деле все было весьма не просто. Радиотехника подсказала только цель. Сколько ни освещай лазером радиолампу, диод или транзистор, световой гармоники не получишь. Конечно, физики и не пытались сделать что-либо столь несуразное. Их защищало то, что обычно называют физической интуицией, а по существу — способность применять предыдущий опыт в новых ситуациях. Эта способность вытекает из глубокой общности законов природы и из единства математических методов описания природы. В данном случае речь идет о нели — нейной теории колебаний, разработанной главным образом учеными из школ Мандельштама и Папалекси, Крылова и Боголюбова. Заметим, кстати, что Хохлов и Ахманов принадлежат к третьему поколению школы Мандельштама — Папалекси, о которой нам уже не раз приходилось упоминать.
Нелинейные явления в волновых процессах уже давно встречались акустикам. Теперь они доставляют неприятности каждому из нас громоподобными звуками, возникающими всякий раз, когда самолет преодолевает звуковой барьер. Дело в том, что звук — волна сжатия и разрежения воздуха. Пока звук слаб, он бежит в воздухе без искажения. Только это позволяет нам разговаривать и наслаждаться музыкой. Но если звук слишком силен...
Там где воздух сжат, скорость звука больше, чем в местах разрежения. Поэтому отдельные участки сильной звуковой волны нагоняют другие ее участки. Плавные звуковые волны искажаются. В них возникают крутые фронты, подобные нарастающим отвесным гребням прибоя, все увеличивающимся по мере набегания морских волн на прибрежную отмель. Такие искаженные и все нарастающие фронты звуковых волн, бегущие в воздухе много быстрее, чем обычные звуки, и есть то, чем тревожит нас сверхзвуковая авиация.
Самым важным из всего сказанного было для оптиков то, что самолет, летящий быстрее звука, не возбуждает ударной волны, так же как не появляется она при дозвуковой скорости. Она возникает только, когда скорость самолета близка к скорости звука. Только при таких условиях звук, возбуждаемый летящим самолетом в течение многих периодов звуковой волны, усиливает ее все больше и больше. При этом почти вся энергия двигателей самолета перекачивается в энергию звуковых волн. Двигатели должны иметь большой запас мощности, чтобы оторвать самолет от высасывающих энергию сопутствующих звуковых волн, прорвать звуковой барьер, обогнать жадные волны, уничтожить синхронизм, вследствие которого самолет вынужден тащить на себе массы воздуха, превращающиеся для него в тяжелые путы.
Если бы, не стремясь к скорости, летчик захотел уподобить свой самолет громыхающей колеснице Ильи-пророка, ему пришлось бы лететь точно со скоростью звука.
Именно такую цель ставили перед собой физики: фаза луча лазера должна бежать в веществе точно с той же скоростью, как и фаза порождаемой им волны второй или третьей, а иногда и более высокой гармоники. Здесь приходится применить слово «фаза», для того чтобы не вызвать неудовольствия тех, кто уже привык к этому слову. Те же, кто предпочитает обходиться без него, вполне могут продолжать думать о волне как таковой, имея в виду гребень простой волны, форма которой совпадает с известной каждому школьнику синусоидой.
Задача обеспечения равенства скорости перемещения фаз — фазового синхронизма — осложняется наличием дисперсии, обнаруженной еще. Декартом и подробно изученной Ньютоном. Дисперсия проявляется в том, что во всех реальных средах скорость света зависит от его частоты, а значит, от длины соответствующей волны. Наличие дисперсии привело Ньютона к выводу о неизбежности оптических искажений, он назвал их хроматической аберрацией, в линзовых телескопах. Ошибочный вывод заставил Ньютона перейти к зеркальным телескопам.