Крушение парадоксов
Шрифт:
Качели — маятник. Их необходимо толкнуть, иначе они останутся неподвижными. Такова природа. Но когда они уже хоть немного качаются, природа не препятствует желанию маленькой девочки раскачать их сильнее. Стоит лишь уловить ритм и приседать, а затем распрямляться в нужные моменты. Если она приседает, когда качели находятся в высшей точке, и распрямляется, когда они быстро проскакивают через низшее положение, размахи будут увеличиваться. Собьешься с ритма, и волшебное чувство полета исчезнет.
Раскачивая свою подругу, пассивно сидящую на качелях, кавалер не должен задумываться. Но потребовались века для того, чтобы понять, как она раскачивается сама. Физики называют этот процесс
Сгибая и разгибая колени, человек меняет положение центра тяжести, а значит, и длину подвеса. Распрямляясь, он совершает работу против сил тяжести. Расслабляя мышцы, он позволяет силе тяжести согнуть его колени. Когда качели неподвижны, это ничего не дает. Если длина подвеса постоянна, то тоже нет другого способа раскачать качели, как толкать их со стороны.
Иное дело, если качели уже хотя бы немного движутся. Распрямляясь в нижней точке, человек совершает работу не только против силы тяжести, но и против центробежной силы. В верхней точке, когда качели на мгновение остаются неподвижными, центробежная сила исчезает, и его колени сгибает только сила тяжести. Работа человека на движущихся качелях больше, чем на неподвижных.
Теперь ясно, откуда берется энергия, необходимая для раскачивания качелей. Но остался нерешенным главный вопрос. Как они раскачиваются? Ведь сила человека, распрямляющего колени, направлена вертикально, а прирост его скорости в этот момент направлен горизонтально, поперек направления силы.
Парадокс возникает потому, что, пытаясь применить законы Ньютона к реальным качелям, мы продолжаем думать о них как об идеальном маятнике с подвесом неизменной длины. Физик скажет как о системе с одной степенью свободы, имея в виду, что у идеального маятника может изменяться только одна характеристика — угол между подвесом и отвесом. Отвес здесь, конечно, призван лишь обозначать вертикальную линию.
Но мы уже заметили — у реальных качелей меняется и длина подвеса. То, что было у идеального маятника неизменным параметром, стало для качелей второй степенью свободы. При этом существенно, что в случае качелей обе степени свободы связаны между собой. Они могут обмениваться энергией. Энергия, затрачиваемая человеком на изменение длины подвеса, может превращаться в энергию обычных колебаний качелей. Важно лишь, чтобы человек работал. Если же он будет распрямляться, взлетая вверх, и сгибать колени в низшей точке, то он будет лишь отбирать энергию у раскачивающихся качелей и погасит их колебания.
Сказанное звучит не очень убедительно, не очень логично с точки зрения здравого смысла. Но с такой точки зрения абсурдно и утверждение физика о том, что атлет, держащий над головой тяжелую штангу, не совершает работы.
Здравый смысл в этом простейшем случае должен умерить свои амбиции. Физик прав, механическая работа отлична от нуля, только если сила действует на каком-либо пути. Если же движения нет, путь равен нулю, равна нулю и механическая работа. Конечно, фиксируя штангу над головой, атлет тратит огромную энергию. Но она не передается штанге. Вся она уходит на нагрев мышц, отдельные волокна которых поочередно сокращаются и расслабляются. Механизм параметрического возбуждения колебаний маятников и струн понял уже знаменитый лорд Рэлей. Мандельштам и Папалекси распространили этот принцип на все колебательные системы и, осознав его всеобщность,
Главный способ получения электрической энергии и в наши дни основан на применении вращающихся генераторов — динамо, как их называли раньше. Таким путем получается электроэнергия не только на обычных тепловых электростанциях и гидростанциях, где генераторы приводятся в движение паром или текущей водой, но и на всех действующих атомных электростанциях. Остальные способы, как, впрочем, и метод параметрической генерации, имеют пока вспомогательное значение. Но для нас последний способ очень важен, ибо он привел ученых к новому типу лазера.
Способ очень прост. Он использует свойства обычного колебательного контура, являющегося электрическим эквивалентом качелей. Простейший контур состоит из электрического конденсатора — две металлические пластинки, разделенные воздушным промежутком, — и проволочной катушки. Если на пластинах конденсатора появятся электрические заряды, положительный на одной и отрицательный на другой, то по катушке потечет ток. Заряды исчезнут, но ток будет продолжаться, пока на пластинах не появятся точно такие же заряды, но противоположного знака. Там, где был плюс, появится минус, и наоборот. Затем все повторится в обратном направлении, и повторялось бы сколь угодно долго, если бы часть энергии не тратилась на нагрев проводов. Постепенно весь запас энергии превратится в тепло, и колебания прекратятся.
Но вспомним о качелях. Будем раздвигать пластины конденсатора каждый раз, когда заряд на нем достигнет наибольшей величины, и возвращать их обратно, когда заряд равен нулю. Придется два раза за период совершать работу против сил притяжения разноименных зарядов. В результате напряжение на конденсаторе каждый раз будет немного увеличиваться, и энергия электрических колебаний станет возрастать за счет механической работы. Так работает параметрический генератор. В реальных условиях энергия электрических колебаний не будет возрастать бесконечно, а лишь до тех пор, пока не установится баланс между механической работой, затрачиваемой на перемещение пластин конденсатора, и нагревом проводов. Конечно, может найтись и полезное применение получающейся при этом электрической энергии.
Общая теория колебаний позволяет, исходя из всего, что изучено в области механических и электрических колебаний, предвидеть аналогичные явления в других областях, в частности в оптике.
Наряду с умножением частоты света теория предсказывает возникновение при известных условиях света с частотой более низкой, чем частота возбуждающего лазерного света. Такие условия возникают, в частности, в некоторых кристаллах, в которых зеленое излучение аргонового лазера возбуждает желтые, красные и даже инфракрасные волны. Характерно, что каждая из волн распространяется только по вполне определенным направлениям. Эти направления определяются условиями синхронизма, о которых уже говорилось в связи с умножением частоты света в подобных кристаллах. В отличие от случая параметрического возбуждения колебаний маятников и электрических контуров, при котором интенсивность колебаний увеличивается со временем, здесь, в оптике, колебания усиливаются по мере продвижения волны в глубь кристалла, причем усиление тем сильнее, чем больше расстояние, на котором сохраняются условия синхронизма.