Курс истории физики
Шрифт:
Открытие спектрального анализа вновь подтвердило эту определенность свойств молекул и атомов. «При помощи спектроскопа, — говорил Максвелл, — длины световых волн различного рода можно сравнивать между собой до одной десятитысячной доли. Таким путем убедились, что не только молекулы каких угодно образчиков водорода в наших лабораториях имеют один и тот же ряд периодов колебаний, но что свет с тем же самым рядом периодов колебаний испускается Солнцем и неподвижными звездами. Таким образом мы убеждаемся, что молекулы такой же точно природы, как у нашего водорода, существуют и в отдаленных пространствах... Молекула водорода... находится ли она на Сириусе или на Арктуре, совершает свои колебания в точности в то же самое время. Следовательно, каждая молекула во Вселенной носит на себе печать меры и числа настолько же ясную, как и метр парижских архивов или как двойной царский локоть карнакского
Ум Максвелла останавливается перед этой таинственной, не объяснимой никакими известными в его время естественными причинами загадкой определенности молекул, необычайной устойчивости их свойств. Он сравнивает эту устойчивость с устойчивостью планетных орбит и указывает, что «научное значение этих астрономических и земных величин много ниже фундаментальных величин, образующих молекулярную систему». «Как мы знаем, — пишет Максвелл, — естественные процессы изменяют и в конце концов разрушают весь порядок и размеры как Земли, так и всей солнечной системы. Но если случались и вновь могут случиться катастрофы, если старые системы могут разрушаться и на их развалинах могут возникать новые системы, то молекулы, из которых эти системы построены, неразрушимы и неизменны — это краеугольные камни материальной Вселенной». Максвелл считает, что такая определенность и неизменяемость молекул, придающая им, по выражению Джона Гершеля, «характерные признаки фабричных изделий », «исключает мысль о возможности их вечного существования и самопроизвольного происхождения», т. е. молекулы и атомы должны быть «изготовлены» богом. Так, по Максвеллу, мы подошли к точке, «дальше которой наука идти не может».
Но наука пошла дальше. То, перед чем остановился Максвелл и к чему призвал на помощь бога, то, что было совершенно необъяснимо с точки зрения классической физики, привлекло внимание Бора. Он открыл в этой определанности «числа и меры» определенность квантовых законов, в которых господствует неизменная и неразрушимая величина — постоянная Планка. Бор в своей нобелевской речи также сравнивает законы, управляющие движением планет, с законами, господствующими в атоме водорода, как и Максвелл. Квантовая физика нашла ключ к разрешению загадки, перед которой остановился Максвелл. Но величие Максвелла в том и проявляется, что он понял, что это загадка, непосильная для классической физики.
Дальнейшее развитие теплофизики и атомистики
Термодинамика и кинетическая теория газов затрагивали самые глубокие вопросы мировоззрения. Единство сил природы, направленность естественных процессов, неизменность «кирпичей мироздания» —все эти вопросы так или иначе возникали из новых теорий и представлений. Рушилась концепция мира, разделенного непе-реходимыми перегородками на отдельные области. Одним из последних устоев этой концепции было представление о совершенных, «постоянных» газах, не переходящих ни в жидкое, ни в твердое состояние и поэтому существенно отличающихся от паров жидкостей.
«Есть ли разница между паром и газом?» — спрашивал А. Г. Столетов в своем «Очерке развития наших сведений о газах» (1879), подходя к вопросу о сжижении газов. Столетов излагает историю развития учения о парах, формирования представлений о ненасыщенных парах, не отличающихся в своем поведении от газов, и насыщенных парах, которые не подчиняются закону Бойля — Мариотта, и, наконец, историю сжижения газов. Эта история начинается с опытов Каньяра де Латура (1777-1859), проведенных в 1822 г. Нагревая жидкости (воду, эфир, алкоголь) в запаянных трубках, он заметил, что при некоторой температуре, различной для разных жидкостей, вещество в трубке становится однородным, представляя собой густой пар. Для эфира это происходило при температуре 200°С, для спирта —около 260°С, для воды — около 360°С. Таким образом инженер-географ, а потом чиновник министерства внутренних дел Каньяр де Латур еще в первой четверти XIX в. установил, что при определенных условиях граница между жидкостью и ее газом исчезает.
Через год молодой ассистент Дэви М. фарадей получил жидкий хлор, затем, нагревая один конец изогнутой стеклянной трубки с газом и охлаждая другой конец, обратил в жидкость девять газов, а в 1844—1845 гг. еще шесть. При этом фарадей сделал очень важный вывод из опытов Каньяра де Латура, указав, что существует температура, при которой «нельзя ожидать, что какое-либо повышение давления, исключая, быть может, чересчур сильное, могло обратить газ в жидкость».
В 1861 г. существование такой температуры было установлено Д. И. Менделеевым. Он назвал ее абсолютной температурой кипения. «Чтобы истинное значение такой температуры, — писал Менделеев в первом
Наблюдения Каньяра де Латура, выводы фарадея и Менделеева не получили резонанса. «Понятия эти, — писал Менделеев, — мало распространились, пока Эндрюс (Andrews, 1869) не выяснил дела с другой стороны, именно исходя из газов. Он нашел, что углекислый газ при температурах выше 31°С не сгущается ни при каких давлениях, при низких же температурах может сжижаться. Температуру эту он назвал критической. Очевидно, что она тождественна с температурой абсолютного кипения ».
Томас Эндрюс родился 19 декабря 1813 г. в Белфасте. Он изучал химию в университете в Глазго. Уже вскоре после поступления в университет он в своей домашней лаборатории выполнил две химические работы. Для совершенствования своих химических познаний он едет в Париж, где работает в лаборатории Дюма и одновременно в госпитале с целью изучения медицины. Возвратившись на родину, он продолжает образование в Дублинском колледже св. Троицы и в Ирландской медицинской школе. В 22 года он получает степень доктора медицины в Эдинбурге, а затем профессора химии в родном городе Белфасте в Королевском колледже. В 1845 г. он становится вице-президентом колледжа и занимает эту должность до выхода в отставку в 1879 г. Умер Эндрюс 26 ноября 1885 г.
Основополагающая статья Эндрюса «О непрерывности газообразного и жидкого состояний вещества» была прочитана в Лондонском Королевском обществе 17 июня 1869 г. и опубликована в 159-мтоме «Philosophical Transactions of fhe Royal Society» за 1869 г. Эндрюс начинает ее с истории вопроса, с опытов Каньяра де Латура, исследований фарадея, Реньо, Пулье, Натерера, подвергавших газы сжатию до 2790 атмосфер.( 1 атмосфера (1 ат) равна 9,8 • 100000 Па. ) Он указывает на свою заметку 1861 г., в которой описывает попытку обратить в жидкость кислород, водород, азот, окись углерода и окись азота, подвергая их большим давлениям и одновременно охлаждению в ванне из углекислоты и эфира. Опыты дали отрицательный результат. Далее он приводит выдержку из своего письма Миллеру, опубликованную в «Химической физике» в 1863 г.: «При частичном снижении углекислоты посредством одного только давления и при постепенном повышении в то самое время температуры до 88° Фаренгейта (31,1°С. — П.К.) поверхность раздела между жидкостью и газом делается менее резкой, теряет свою кривизну и, наконец, исчезает. В это время пространство заполнено однородным текучим веществом, в котором в случае внезапного уменьшения давления или небольшого понижения температуры обнаруживается характерное явление полос, перебегающих или волнующихся по всей его массе. При температуре выше 88° нельзя получить никакого видимого снижения углекислоты или разделения ее на две отличные друг от друга формы вещества, даже если прилагать давления в 300 или 400 атмосфер. Окись азота дала сходные результаты».
В статье 1869 г. Эндрюс подробно описывает аппаратуру, примениющуюся при исследованиях. Изменяя температуру углекислого газа от 13 до 48°С, он получил изотермы, имевшие при температурах ниже 31,1°С характерный излом, показывающий сжижение газа и переход кривой в прямую, параллельную оси абсцисс, при полном обращении газа в жидкость. При температуре 31,1°С, которая была на 0,2° выше температуры, названной им критической, никакого разделения газа на две части не наблюдается «и самое тщательное исследование не может открыть никакой однородности в состоянии углекислоты внутри трубки».