Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Однако энтальпия была введена в термодинамику значительно позже 1840 г. Термодинамические функции — внутренняя энергия и энтропия — были введены Клаузиусом. В 1869 г. Массье (1832—1896) прибавил к этим функциям две новые, которые он назвал характеристическими. Если обозначить внутреннюю энергию через V, энтропию через S, абсолютную температуру через Т, объем через V, а давление через р, то функции Массье имеют вид:

(-U+TS)/T и (-U+TS-pV)/T.

Массье показал, что из функции такого вида могут быть выведены термодинамические свойства жидкости. Дальнейший шаг был сделан американским физиком Гиббсом.

Джозайя Вилард Гиббс родился 11 февраля 1839 г. в Нью-Гевене, штат Коннектикут, в семье профессора Гейльского университета. В 1866 г. он уехал на три года в Европу, был в Париже, учился в Берлине

у Магнуса, в Гейдельберге у Кирхгофа и Гельмгольца и в 1869 г. вернулся в Нью-Гевен, где в 1871 г. получил звание профессора математической физики Иельского университета

Первые работы Гиббса, начиная с его докторской диссертации, были посвящены технической механике. Став профессором, он читал механику, волновую оптику, векторный анализ, теорию электричества и магнетизма. В 1873 г. появились его первые термодинамические работы «Графические методы в термодинамике жидкостей» и «Метод геометрического представления термодинамических свойств веществ при помощи поверхностей».

В первой из этих работ Гиббс развил графический метод, впервые примененный Клапейроном в теории цикла Кар-но. Клапейрон представлял процессы цикла графически в системе осей: объем — давление. Гиббс ввел диаграммы в переменных: энтропия и температура, энтропия и объем, логарифмы объема, температуры и давления. Цикл Карно в системе энтропия — температура изображался, как отмечал сам Гиббс, «чрезвычайно простой фигурой — четырехугольником, в котором стороны параллельны осям координат». Распространение графического метода на термодинамику очень ценил Максвелл, отмечая, что Гиббсу «мы обязаны тщательным исследованием различных методов представления термодинамических соотношений с помощью плоских диаграмм». Особенно восхищался Максвелл второй работой Гиббса, в которой Гиббс «предложил чрезвычайно плодотворный метод, а именно исследование свойств любого вещества при помощи поверхности». Эту термодинамическую поверхность, как ее называл Гиббс, он строил в системе осей, в которой прямоугольные координаты различных точек поверхности были равны объему, энтропии и энергии тела в его различных состояниях. Максвелл собственноручно изготовил гипсовую термодинамическую поверхность воды и послал ее Гиббсу.

Заметим, что термодинамическая поверхность воды, по Гиббсу и Ван-дер-Ваальсу, стала предметом кандидатского сочинения молодого русского физика Д. А. Гольдгаммера, которое он закончил в 1882 г. Оно было опубликовано в «Ученых записках» Московского университета в 1885 г.

В этой же работе Гиббс формулирует условие устойчивого равновесий термодинамической системы в виде1 минимального значения функции U-TS+pV (у Гиббса: е-Гр+рУ), которую мы теперь называем термодинамическим потенциалом Гиббса. В большом исследовании «О равновесии гетерогенных систем», публиковавшемся в 1875—1878 гг., Гиббс развил и широко применил метод термодинамических функций. Указав, что такие термодинамические функции, как энергия и энтропия, значительно облегчают понимание законов, управляемых любой термодинамической системой, Гиббс отмечает, что «разные значения энергии и энтропии в целом характеризуют то, что существенно в действиях, производимых системой при переходе от одного состояния к другому». Он пишет далее, что функция, выражающая способность системы совершать механическую работу, «играет ведущую роль в теории равновесия». Именно здесь Гиббс, комбинируя такие функции состояния, как энтропию, которую он обозначает н),

и энергию, которую он обозначает , вводит дит функцию:

= -t

(в современных обозначениях F = U - TS),

=+рV

(в современных обозначениях Н = U + PV),

=-t + pV

(в современных обозначениях = U - TS + pV).

Первую из этих функций переоткрыл Гельмгольц в 1882 г., назвал ее «свободной энергией» и с ее помощью построил термодинамическую теорию гальванического элемента.

Вторая функция получила название энтальпии или тепловой функции. С ее помощью описывается процесс Джоуля — Томсона. Последняя функция называется термодинамическим потенциалом Гиббса.

В своем исследовании Гиббс сформулировал условия равновесия

гомогенной и гетерогенной системы, состоящей из произвольного числа компонентов и фаз. Термин «фаза» введен Гиббсом, под ним он понимает тела, характеризуемые состоянием и составом, причем «мы считаем все тела отличающимися друг от друга только количеством и формой, разными образцами одной и той же фазы».

Рассматривая условия равновесия гетерогенной системы, Гиббс находит правило фаз, согласно которому система, состоящая из r фаз и п независимых компонентов, «способна к n+2 - r измерениям фаз», или, как принято говорить теперь, имеет f = n+2-r степеней свободы.

Вскоре после окончания своего классического исследования, весной 1879 г. Гиббс был избран членом Национальной Академии США, в 1880 г. — членом Американской Академии наук и искусств в Бостоне. В благодарственном письме в Бостонскую Академию Гиббс, между прочим, писал: «Ведущей идеей моей работы «Равновесие гетерогенных систем» было выявление роли энергии и энтропии в теории термодинамического равновесия. При их помощи легко выразить общее условие равновесия, а приложение его к различным случаям приводит нас сразу к специальным условиям, характеризующим эти случаи».

Научная слава Гиббса быстро росла после опубликования его термодинамических работ. Он избирается членом многих зарубежных академий и научных обществ, получает научные награды. В 1902 г. вышел фундаментальный труд Гиббса «Основы статистической механики». 28 апреля 1903 г. Гиббс скончался.

После Гиббса термодинамика перестала быть только механической теорией теплоты она превратилась в весьма общую теоретическую систему, прило-жимую ко всем физическим и химическим процессам. Гельмгольц, применивший в 1882 г. свободную энергию к теории гальванического элемента, писал в статье «К термодинамике химических процессов»: «Наиболее исчерпывающим и общим способом термодинамические условия для молекулярных и химических процессов в системах тел, состоящих или смешанных из произвольного числа простых веществ, были развиты аналитически г-ном Д. В. Гиббсом (1878)».

М.Планк применил в 1888 г. метод Гиббса к теории разведенных растворов. Читая лекции по теоретической физике в Колумбийском университете в Нью-Йорке 24 апреля 1909 г., он говорил: «Как глубоко охватывает это предложение (принцип возрастания энтропии) все физические и химические отношения, на это лучше и полнее других было указано Джоном Вилардом Гиббсом, одним их наиболее знаменитых теоретиков всех времен не только Америки, но и всего мира».

Всеобъемлемость принципов термодинамики, в частности второго начала, заставляла физиков-теоретиков искать причины такой универсальной мощи термодинамики. В результате в науке возникли два направления: феноменологическое и атомистическое, феноменологическое направление не считало необходимым искать более глубоких причин физических процессов, оно ограничивало задачу изучения природы описанием явлений на основе экспериментально установленных принципов. Успехи термодинамики привели к появлению энергетического направления в науке. Энергетики Гельм, Оствальд и другие считали энергию основным понятием науки, а такие понятия, как «материя», «сила», производными и даже излишними.

Что касается представления об атомах и молекулах, то энергетики, а также венский физик Эрнст Мах, один из видных сторонников феноменологического направления, считали эти представления продуктами чистой фантазии, аналогичными представлениям о ведьмах и привидениях. Раскрывать понятия и законы термодинамики с помощью молекулярно-кинетической теории они считали антинаучным занятием.

Однако такие видные представители науки, как Клаузиус, Максвелл, а затем Больцман, с успехом разрабатывали мо-лекулярно-кинетическую теорию. Идея молекулярного движения, происходящего по законам механики, вместе с тем подсказывала мысль: обосновать термодинамику законами механики. Осуществлению этой мысли посвятили усилия Клаузиус, Гельмгольц, Больцман и др. Здесь с самого начала возникала трудность объяснения второго начала и необратимых процессов, поскольку уравнения механики обратимы. Попытка истолковать второе начало с помощью вариационного принципа Гамильтона не принесла ощутимых результатов. Но Больцману удалось получить фундаментальный результат и заложить основы статистической механики.

Поделиться:
Популярные книги

Крепость над бездной

Лисина Александра
4. Гибрид
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Крепость над бездной

Наследие Маозари 6

Панежин Евгений
6. Наследие Маозари
Фантастика:
попаданцы
постапокалипсис
рпг
фэнтези
эпическая фантастика
5.00
рейтинг книги
Наследие Маозари 6

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Боец с планеты Земля

Тимофеев Владимир
1. Потерявшийся
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Боец с планеты Земля

Пара для Эммы

Меллер Юлия Викторовна
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Пара для Эммы

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Ваше Сиятельство 11

Моури Эрли
11. Ваше Сиятельство
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Ваше Сиятельство 11

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Камень. Книга пятая

Минин Станислав
5. Камень
Фантастика:
боевая фантастика
6.43
рейтинг книги
Камень. Книга пятая

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Совершенный: охота. Часть 2

Vector
4. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: охота. Часть 2