Чтение онлайн

на главную - закладки

Жанры

Курс теоретической астрофизики
Шрифт:

Однако при достаточно большом числе заряженных частиц (ионов и свободных электронов) они оказывают возмущающее действие на атомы, вследствие чего число осуществляющихся уровней ещё более уменьшается. Заряженные частицы благодаря эффекту Штарка вызывают также расширение линий. При этом высокие члены бальмеровской серии между собой сливаются и их уже становится невозможным отличить от континуума. При учёте слияния линий Инглис и Теллер получили следующую формулу для определения концентрации заряженных частиц n по номеру верхнего уровня последней наблюдаемой бальмеровской линии:

lg

n

=

23,26

7,5

lg

i

.

(13.14)

Здесь при низких

температурах (T<10/i) под n следует понимать концентрацию ионов и свободных электронов, а при высоких температурах (T>10/i) только концентрацию ионов. Если можно считать, что ионы и свободные электроны образуются лишь при ионизации атомов водорода, то в первом случае n=2ne, а во втором n=ne.

Описанные способы определения средней концентрации свободных электронов в звёздных атмосферах не отличаются большой точностью (хотя бы вследствие неопределённости самого понятия величины ne). Однако на практике для грубой оценки ne эти способы применяются весьма часто. В частности, по числу наблюдаемых бальмеровских линий в звёздных спектрах можно легко отделить звёзды-карлики от звёзд-гигантов. В атмосферах карликов концентрация частиц значительно больше, чем в атмосферах гигантов, а значит, величина i должна быть меньше. Особенно малое число бальмеровских линий должно присутствовать в спектрах белых карликов, что вполне соответствует наблюдениям.

3. Турбулентность в атмосферах.

Изучение звёздных атмосфер методом кривых роста показало, что для многих звёзд значения параметра v в несколько раз превосходят средние тепловые скорости атомов. Так возникало представление о существовании в звёздных атмосферах наряду с тепловым движением другого типа хаотического движения газа. Это движение было названо «турбулентным» (хотя оно и может отличаться от турбулентного движения в аэродинамическом смысле). Таким образом, полная скорость хаотического движения атомов газа в звёздной атмосфере определяется формулой

v

=

v^2+v

t

^2

,

(13.15)

где v — средняя скорость теплового движения, равная

v

=

2kT

ma

1/2

,

(13.16)

и vtскорость турбулентного движения.

Особенно большие турбулентные скорости были найдены у звёзд-сверхгигантов. Например, по определению Струве, в атмосфере Возничего vt=20 км/с, а в атмосфере 17 Зайца vt=67 км/с. Для сравнения укажем, что средние тепловые скорости атомов металлов в атмосферах звёзд порядка 1 км/с.

Вследствие турбулентных движений в звёздных атмосферах происходит также изменение профилей линий поглощения, а именно — расширение линий. В спектрах некоторых сверхгигантов слабые линии оказываются широкими и мелкими, а сильные линии — расширенными в их центральных частях, но лишёнными крыльев (этим они отличаются от линий в спектрах звёзд-карликов).

Однако для ряда звёзд отмечены большие расхождения между турбулентными скоростями, определёнными по эквивалентным ширинам (т.е. по кривым роста) и по полуширинам линий поглощения. Например, при изучении звезды Большого Пса по эквивалентной ширине было получено vt=5 км/с, а по полуширине vt=30 км/с. Для объяснения подобных расхождений была выдвинута та точка зрения, что в звёздных атмосферах ячейки турбулентности могут иметь различные масштабы. Если линейные размеры ячейки турбулентности малы по сравнению с толщиной атмосферы, то турбулентное движение влияет на линии поглощения совершенно так же, как тепловое движение. В этом случае не должно быть различий в турбулентных скоростях, найденных по эквивалентным ширинам и по полуширинам линий поглощения. Если же линейные размеры

ячеек турбулентности превосходят толщину атмосферы, то турбулентное движение должно расширять линии поглощения, но не может увеличить их эквивалентные ширины. В этом случае влияние турбулентности на линии поглощения аналогично влиянию вращения звезды. Согласно такому взгляду турбулентное движение в атмосфере Большого Пса ближе подходит ко второму из указанных случаев.

Следует отметить, что спектроскопически определённая турбулентность большого масштаба является, по-видимому, особым типом конвекции.

Подробное исследование турбулентности в звёздных атмосферах было выполнено О. Струве и Су Шухуаном. В частности, они занимались определением масштабов турбулентных ячеек на основании зависимости между эквивалентной шириной и полушириной линии поглощения (см., например [91).

4. Вращение звёзд.

Вращение звезды вокруг собственной оси может быть установлено по виду спектра. Если звезда вращается, то части диска, удаляющиеся от нас, дают линию поглощения, смещённую в красную сторону спектра, а части диска, приближающиеся к нам, в фиолетовую. В целом вращающаяся звезда даёт линию поглощения, расширенную по сравнению с линией поглощения в спектре невращающейся звезды. Очевидно, что вращение звезды вызывает расширение всех линий. Поэтому эффект вращения легко отделяется, например, от эффекта Штарка, вызывающего заметное расширение лишь тех линий, которые особенно чувствительны к электрическому полю.

Рис. 14

Рассмотрим сначала вопрос о влиянии вращения на профиль линии поглощения. Пусть скорость вращения звезды на экваторе равна v, а ось вращения образует с лучом зрения угол i. Возьмём прямоугольную систему координат x, y, z с началом в центре звезды, с осью z, направленной к наблюдателю, и с осью y, лежащей в плоскости, проведённой через ось вращения и луч зрения (рис. 14). Для упрощения записи будем считать, что радиус звезды равен единице.

Обозначим через I(x,y,-) интенсивность излучения, идущего от точки с координатами x, y на диске невращающейся звезды внутри линии на расстоянии - от её центра. Если звезда вращается, то в выражение для интенсивности излучения вместо надо подставить центральную частоту для рассматриваемой точки, равную

+

vz

c

,

где vz — лучевая скорость этой точки. Легко получить, что

v

z

=-

xv

sin

i

.

(13.17)

Поэтому интенсивность излучения, идущего от точки с координатами x, y на диске вращающейся звезды, в частоте будет

I

x,

y,

+

v

c

x

sin

i

.

Обозначим далее через I(x,y) интенсивность излучения, идущего от точки с координатами x,y на диске звезды в непрерывном спектре. Тогда отношение энергии, излучаемой звездой в частоте внутри линии, к энергии, излучаемой звездой в непрерывном спектре, будет равно

r

(v-v)

=

+1

– 1 dx

1+x^2

0 I

x, y, - +

v

c x sin i

dy

+1

– 1 dx

1+x^2

0 I(x,y) dy

(13.18)

Этой формулой и определяется профиль линии поглощения в спектре вращающейся звезды.

С возрастанием скорости вращения звезды ширина линии поглощения увеличивается. Однако одновременно линия становится менее глубокой. Указанное обстоятельство связано с тем, что эквивалентная ширина линии при этом не меняется: при любой скорости вращения она равна эквивалентной ширине линии в спектре невращающейся звезды. Этот результат, понятный из физических соображений, легко также получить из формулы (13.18).

Поделиться:
Популярные книги

Отверженный VIII: Шапка Мономаха

Опсокополос Алексис
8. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VIII: Шапка Мономаха

Газлайтер. Том 18

Володин Григорий Григорьевич
18. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 18

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Новый Рал 7

Северный Лис
7. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 7

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь