КВ-приемник мирового уровня? Это очень просто!
Шрифт:
Вырабатывается сигнал биений. Он проявляется в виде свиста, тон которого меняется. Автодинные приемники являлись почти идеальными для приема телеграфных сигналов.
«А»: Я краем уха слышал, что имеются приемники, использующие какую-то технику ПРЯМОГО ПРЕОБРАЗОВАНИЯ?
«С»: Мы обязательно будем говорить о принципах этой техники, но позднее!
А сейчас, мои дорогие друзья, хочу заметить, что среди большого количества самых разнообразных разновидностей приемной техники (а мы упомянули далеко не о всех) особое место занимает выдающееся изобретение электроники 20 века — СУПЕРГЕТЕРОДИН!
Глава 6.
«Спец»: Первый супергетеродинный приемник капитан корпуса связи армии США Эдвин Говард Армстронг, служивший в то время во Франции, (а это было время Первой Мировой войны) собрал на территории Европы. Он подал заявку на патент в США из Парижа 30 декабря 1918 года, а получил патент 3 июля 1920 г. Супергетеродин — это величайшее достижение не только Армстронга, но всей электронной техники вообще!
«А»: Что, неужели за 80 лет не появилось никакой более удачной идеи?
«С»: Представь себе — нет! Хотя вариаций на тему супергетеродинного принципа имеется великое множество!
Первоначально Армстронг разработал супергетеродин с целью изыскать способ усиления сигнала на тех частотах, которые были недоступны для электронных ламп того времени. Именно с появлением супергетеродинной схемы, радиотехника стала бурно развиваться!
«Н»: Уважаемый Спец! Но что же представлял из себя супергетеродин Армстронга? И в чем заключается его феноменальный секрет?
«С»: Вот структурная схема супергетеродина (рис. 6.1).
Принцип супергетеродинного приема состоит в том, что принятые колебания преобразуются по частоте в некоторую ПРОМЕЖУТОЧНУЮ частоту. Вот на ней и происходит основное усиление сигнала! А поскольку промежуточная частота — фиксирована, в УПЧ можно задействовать значительное число контуров, обеспечивающих необходимую избирательность!
«Н»: Но ведь ранее мы знакомились с замечательными свойствами колебательного контура! Разве с его помощью нельзя добиться необходимой избирательности? Зачем для этого нужна целая система контуров?
«С»: Дорогой Аматор! Что слышу я из уст нашего друга? Вы разве не касались вопроса АЧХ связанных контуров? Или того, какова может быть предельная избирательность?
«Н»: Это я виноват! Слишком торопил Аматора согласиться на мое участие в вашей с ним беседе!..
«С»: Не беда! Однако, поскольку супергетеродин — это очень серьезно и никаких «галопом по европам» здесь не будет, я попрошу нашего уважаемого Аматора прямо сейчас продолжить тему о колебательных контурах и избирательности!
«А»: С удовольствием! Для чего предлагаю вернуться еще раз к АЧХ колебательного контура. Но сейчас в наши рассуждения мы добавим немного конкретики (см. рис. 6.2).
Так все СЕМЬ представленных частот f1—f6,
«С»: Должен заметить, что это весьма неплохой контур!
«А»: Согласен! Теперь подсчитаем, чему равна полоса пропускания нашего контура и увековечим ее очертания на представленном выше рисунке.
Q = f0/f;
f = fo/Q = 107/102 = 105 Гц!
То есть полоса нашего контура равна 100 кГц! И это по уровню 0,707!..
«Н»: Как же так!? Ведь из этого следует, что наш контур не обладает, практически, НИКАКОЙ ИЗБИРАТЕЛЬНОСТЬЮ!
«А»: Совершенно верно, Незнайкин! Приведенный пример ясно показывает, что даже на частоте 10 МГц, контур уже не обладает ИЗБИРАТЕЛЬНОСТЬЮ ПО СОСЕДНЕМУ КАНАЛУ! (Это узаконенный технический термин, который показывает — во сколько раз ослабляется селекторной цепью сигнал частоты, отстоящей от f0 на 10 кГц, если входные величины их сигналов — равны!)
«Н»: Но может стоит просто взять Q = 1000?
«А»: Ты воображаешь, что это так просто сделать? В какой-то степени дело можно улучшить, если резко увеличить размеры катушки. Намотать ее толстым проводом, лучше посеребреным, на очень качественном диэлектрическом каркасе. Но и в этом случае, для реального контура получить Q больше 250 вряд ли удастся! А поскольку, как ты еще убедишься дальше, катушек таких в серьезном приемнике достаточно много, то габариты его могут стать вовсе неприемлемыми!
«С»: А кроме всего прочего, даже это не спасает положения! При Q = 250, полоса пропускания находится на уровне 40 кГц!
«А»: Легко видеть, что в полосе приема этого контура (Q = 250) будет прослушиваться ПЯТЬ каналов одновременно!
«Н»: Но ведь подобный преселектор — это ВСЕ, чем располагает «прямичок» для отстройки от мешающих станций!
«А»: Не совсем так… Мы ведь еще не рассматривали системы СВЯЗАННЫХ КОНТУРОВ. Их еще называют ПОЛОСОВЫМИ ФИЛЬТРАМИ. Простейшие полосовые фильтры состоят из двух связанных между собой высокодобротных контуров, настроенных на несущую частоту. Изменяя связь между ними, можно значительно улучшить форму АЧХ, приблизив ее к идеальной, прямоугольной.