Чтение онлайн

на главную - закладки

Жанры

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:

С внедрением в начале 50-х годов в практику квантовохимических исследований быстродействующих ЭВМ начался качественно новый этап развития теории строения молекул. Основное внимание исследователей сосредоточилось не столько на качественных аспектах теории химической связи, сколько на развитии методов количественного расчета молекулярных свойств. Однако рассмотрение этой стороны развития теории не входит в нашу задачу. Мы ограничимся в дальнейшем обсуждением лишь некоторых новых результатов, относящихся к описанию структуры химической связи, а также квантовомеханической интерпретации понятий классической теории химического строения.

Глава 4. Современные методы исследования структуры химической связи

Матрица плотности и некоторые замечания о квантовомеханическом описании одкозяектронных и многоэлектронных состояний

В квантовой механике состояние частицы с энергией

е описывается волновой функцией (r), которая удовлетворяет уравнению Шредингера

(4.1)

При этом любому физическому состоянию частицы можно сопоставить множество волновых функций, отличающихся друг от друга множителем exp(i) с вещественным параметром а, не зависящим от координат частицы. Иными словами, волновая функция '(r) = exp (i)(r), и в частности '(r) = — (r) ( = ), так же как и (r), будет собственной функцией гамильтониана с тем жезначением энергии . Если волновая функция (r) нормирована на единицу:

(4.2)

то такому же условию нормировки будет удовлетворять волновая функция '(r). Математические ожидания всех физических величин, представленных операторами

и вычисляемых как интегралы

(4.3)

также не меняются при рассматриваемом преобразовании. Именно это обстоятельство и доказывает, что волновые функции и ' описывают одно и то же состояние частицы.

Действие оператора

на (r) определяется по формуле

(4.4)

Функция в (4.4) называется ядром оператора

в его интегральном представлении. При таком представлении операторов
легко видеть, что математическое ожидание

(4.5)

определяется фактически не функцией (r), а произведением двух -функций

(4.6)

которое называется матрицей плотности для частицы, нахо дящейся в определенном состоянии. Строго говоря, матрица плотности (r|r') не может быть матрицей в обычном смысле этого слова, если координаты r, нумерующие ее строки, и координаты r', нумерующие ее столбцы, не дискретны. Тем не менее термин "матрица плотности" для (r|r') является общепринятым.

Матрица плотности становится истинной матрицей, если она представлена в некотором базисе функций Xk(r), т. е. определяется совокупностью матричных элементов Pkl, по которым можно воспроизвести (r|r') согласно равенству

(4.7)

В качестве функций Xk(r) в квантовой химии чаще всего используются атомные орбитали, центрированные на ядрах атомов, образующих молекулу. Например, для молекулы Н2+ матрица плотности в двухцентровом базисе 1s-орбиталей атомов водорода имеет вид

где S — интеграл перекрывания базисных АО.

Матричные элементы Рkl получаются из коэффициентов разложения МО в базисе АО:

по формуле

Зависимость матрицы плотности (r|r') от r и r'

не следует понимать в том смысле, что она зависит от координат двух частиц.

В действительности r и r' представляют собой две различные (но возможно и совпадающие) точки пространства, в которых может быть локализована одна рассматриваемая частица. При этом плотность вероятности локализации ее в некоторой точке r равна диагональному элементу

. Именно эту функцию характеризуют часто используемые в квантовой химии карты распределения электронной плотности. Функция (r) содержит информацию, достаточную для вычисления математических ожиданий тех весьма многочисленных физических величин, операторы которых не включают интегрирования или дифференцирования. Например, дипольный момент d электронной системы относительно центра координат представлен одноэлектронным оператором с ядром [33] :

33

Функция Дирака (r — r') относится к классу так называемых обобщенных функций и определяется равенством )

(4.8)

и определяется по формуле

(4.9)

Использование матрицы плотности вместо волновой функции устраняет указанную выше неоднозначность в квантовомехани-ческом описании состояния частицы. В то же время такое описание является более общим и позволяет характеризовать одночастичные состояния для систем, содержащих несколько различных или тождественных частиц, хотя точное описание этих состояний с помощью волновых функций невозможно.

Пусть некоторое состояние W-электронной системы задано антисимметричной нормированной функцией (x1,..., xN), где хi обозначает совокупность пространственных координат (ri) и спиновой переменной (i) i-гo электрона. Тогда N-электронная матрица плотности N определяется аналогично одноэлектронной (4.6):

(4.10)

Диагональные элементы матрицы плотности N характеризуют вероятность того, что первый электрон локализован в точке x1, в то время как второй — в точке х2, третий — в точке х3 и т д. Конечно, в силу неразличимости электронов их нумерация является произвольной.

Рассматриваемые N электронов могут входить в состав системы включающей также и другие частицы. Например, молекулы состоят из электронов и атомных ядер, образующих единую систему. Пусть состояние последней определяется нормированной функцией (x1,..., xN,), причем обозначает совокупность переменных всех частиц, не являющихся электронами (т. е. ядер). Состояние N-электронной системы в общем случае не может описываться -функцией и в этом смысле не является чистым [34] . Но оно может характеризоваться N-частичной редуцированной матрицей плотности:

34

В так называемом адиабатическом приближении электронной системе в молекуле сопоставляется определенная -функция, которая зависит и от ядерных координат.

(4.11)

Термин "редуцированная" в применении к матрице плотности означает, что некоторые переменные в левом и правом наборах ее аргументов отождествляются

и затем по ним проводится интегрирование.

Подобным образом определяются редуцированные матрицы плотности для k-электронных подсистем N-электронной системы:

(4.12)

Целесообразность введения множителя

обусловлена тождественностью электронов. В частности, редуцированная одноэлектронная матрица плотности определяется через N-электронную равенством

Поделиться:
Популярные книги

Контракт на материнство

Вильде Арина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Контракт на материнство

Дочь опальной герцогини

Лин Айлин
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дочь опальной герцогини

Газлайтер. Том 14

Володин Григорий Григорьевич
14. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 14

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Купи мне маму!

Ильина Настя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Купи мне маму!

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Красная королева

Ром Полина
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Красная королева

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Жена фаворита королевы. Посмешище двора

Семина Дия
Фантастика:
фэнтези
5.00
рейтинг книги
Жена фаворита королевы. Посмешище двора

Ворон. Осколки нас

Грин Эмилия
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ворон. Осколки нас

Тактик

Земляной Андрей Борисович
2. Офицер
Фантастика:
альтернативная история
7.70
рейтинг книги
Тактик

Хозяйка расцветающего поместья

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Хозяйка расцветающего поместья

Хозяйка поместья, или отвергнутая жена дракона

Рэйн Мона
2. Дом для дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка поместья, или отвергнутая жена дракона