Логические ошибки. Как они мешают правильно мыслить
Шрифт:
Субъект и предикат суждения находятся в определенных отношениях по объему, которые для наглядности могут изображаться графически. Возьмем общеутвердительное суждение «все S есть P». Это значит, что все предметы, к которым относится понятие S, обладают признаками P. «Все дельфины млекопитающие». Значит, все дельфины входят в число млекопитающих, то есть объем S в данном случае полностью входит в объем P. Если число всех млекопитающих (P) и число дельфинов (S) изобразить в виде кругов, тогда получатся два круга разной величины, из
Общеотрицательное суждение «ни одно S не есть P» выражает отношение полного исключения объемов двух понятий «ни один дельфин не есть рыба»; как видим на рис. 4, ни одна точка S не входит в P, и ни одна точка P не совпадает ни с одной точкой S.
В частноутвердительном суждении «некоторые S есть P» выражается отношение частичного совпадения между объемами субъекта и предиката, как например в суждении «некоторые студенты нашей группы досрочно сдали все экзамены». Если одним кругом изобразить всех студентов нашей группы, а другим — всех студентов, сдавших досрочно экзамены, тогда студенты нашей группы, сдавшие досрочно экзамены, должны занять часть того и другого круга, что можно изобразить в виде схемы (рис. 5).
Такой же схемой выражается и частноотрицательное суждение «некоторые S не есть P», как например «некоторые студенты нашей группы не сдавали экзамены досрочно». Если одним кругом обозначить студентов нашей группы, другим — студентов, сдававших досрочно, тогда заштрихованная часть круга будет обозначать студентов нашей группы, не сдававших досрочно (рис. 6).
Частноотрицательное суждение отличается от частноутвердительного, как мы видим, тем, что в первом часть S включается в P, во втором же имеет место исключение части S из P.
В тесной связи с отношением понятий по объему находится очень важное понятие распределенности терминов в суждении. Терминами суждения называются его субъект и предикат.
Если в суждении идет речь обо всем объеме субъекта и предиката, тогда эти термины считаются распределенными. Если же говорится лишь по крайней мере о части субъекта или предиката, тогда считают, что термины не распределены. В общеутвердительном суждении «все S есть P» обо всех предметах, обозначаемых понятием S, говорится, что они включаются в объем P. Все S совпадают с P. Но мы не можем сказать, что все P включаются в объем S. Итак, в общеутвердительном суждений субъект распределен, а предикат не распределен.
В частноутвердительном суждении «некоторые S есть P» речь
Следовательно, здесь оба термина суждения являются нераспределенными. В общеотрицательном суждении «ни одно S не есть P» обо всех S говорится, что они исключаются из P, причем исключаются они не из части P, а из всего P. Следовательно, оба термина суждения в данном случае распределены. Наконец, в частноотрицательном суждении «некоторые S не есть P» по крайней мере часть объема S исключается из объема P, следовательно, S не распределено. Но эта часть S исключается не из части, а из всего объема P, следовательно, P в данном случае распределено. Чтобы это соотношение стало еще яснее, можно сопоставить данное суждение с общеотрицательным. В чем различие между общеотрицательным и частноотрицательным суждениями? Только в субъекте. Предикат же одинаков в том и другом случае. Поэтому, если предикат в одном из этих суждений распределен, он будет распределен и в другом.
Суммируя все то, что здесь сказано о распределенности терминов, можно сделать два важных общих вывода:
1) субъект всегда распределен только в общих суждениях;
2) предикат всегда распределен только в отрицательных суждениях.
Во всех рассмотренных выше суждениях субъект и предикат не расчленялись и каждый из них мыслился как единое целое. Но возможны и суждения другого типа, когда субъект и предикат охватывают не одно, а два или более понятий. Например, «Петя станет или поэтом, или ученым». Здесь предикат «станет или поэтом, или ученым» состоит из двух самостоятельных понятий «станет поэтом», «станет ученым».
Такие суждения с расчлененным предикатом или субъектом называются разделительными. Само название указывает на расчленение здесь терминов суждения.
Союз «или», соединяющий разные части предиката в разделительном суждении, может употребляться в двух значениях:
1) неисключающее «или», когда в суждении «S есть или P1 или P2 или P3» S может в принципе обладать одновременно всеми этими предикатами. Например, Петя может стать и поэтом, и писателем, и ученым. Суждения, в которых «или» имеет такой смысл, называются соединительно-разделительными;
2) исключающее «или», когда в суждении «S есть или P1 или P2 или P3» субъект обладает только одним из этих трех предикатов, например: «эта птица — или ворона, или сорока, или галка».
В этом случае «или», конечно, исключает каждый из этих 3 предикатов из двух других. Такие суждения называются исключающе-разделительными.
Исключающе-разделительное суждение может быть преобразовано в другой вид. Смысл этого суждения в том, что если S есть P1, то S не есть P2 или P3: если эта птица — ворона, значит, эта птица не сорока и не галка. В полученном суждении имеется условие, в котором истинность одной части обусловливает истинность другой части, в котором первая часть — основание, вторая часть — следствие, вытекающее из этого основания. Такие суждения называются условными. Условные суждения могут быть получены, таким образом, путем преобразования разделительных суждений.
В нашем примере в обеих частях условного суждения — и в основании, и в следствии — одно и то же S (птица), связки же разные: в основании — утвердительная, в следствии — отрицательная. Но это лишь частный случай условных суждений. Возьмем, например, суждение «если мороз усилится, то река замерзнет». В этом суждении субъект основания (мороз) не совпадает с субъектом следствия (река), а связка в той и другой части суждения положительная. Такой тип суждения является наиболее характерным для условных суждений. Путем различных преобразований в формулах суждений получим общий вид условного суждения.