Логика и аргументация: Учебное пособие для вузов.
Шрифт:
Наиболее известным и широко распространенным способом определения понятий, известным еще со времен Древней Греции, является определение через ближайший род (или класс) предметов, к которому относится определенный вид. Как показывает само название, для такого определения необходимо, во-первых, установить ближайший род (или класс) предметов, во-вторых, указать видовое отличие определяемого понятия. Так, чтобы определить понятие квадрата, можно указать несколько родов (или классов) геометрических объектов, в объем которых входит объем понятия квадрата. К ним относятся четырехугольники, параллелограммы, прямоугольники и ромбы. Ближайшими же родами служат ромбы и прямоугольники. Чтобы выделить квадраты среди ромбов и прямоугольников, следует указать их видовые (или специфические)
Специфический видовой признак может быть задан и другими способами, но при этом он должен всегда соотноситься с ближайшим родом. Так, например, в генетических определениях отличительный видовой признак показывает характер происхождения или образования определяемого понятия. Типичным примером подобного определения может служить определение окружности как геометрического места точек или замкнутой кривой, образованной движением отрезка прямой вокруг неподвижной точки - ее центра.
Ошибки, которые могут возникать при рассмотренном методе определения понятий, были проанализированы еще Аристотелем. Они связаны с несоразмерностью объемов определяемого и определяющего понятий. При правильном определении эти объемы совпадают. Так, объемы равносторонних прямоугольников и квадратов одинаковы, и поэтому определение квадрата как равностороннего прямоугольника правильно.
Если объем определяющего понятия больше объема определяемого понятия, то такое определение будет чрезмерно широким. В таком случае определяемое понятие будет представлять собой вид по отношению к роду. Например, если определить диаметр "как хорду, соединяющую две точки окружности", то легко убедиться, что оно неправильно, ибо диаметром служит не всякая хорда, а только хорда, проходящая через центр окружности.
Когда объем определяющего понятия будет меньше определяемого понятия, то определение считается чрезмерно узким, и потому неправильным. Если бы в предыдущем примере мы исключили из класса хорд все диаметры и определили бы хорду "как прямую, соединяющую две точки окружности, но не проходящую через центр", тогда мы бы исключили из класса хорд все диаметры. Это определение неправильно, поскольку хордами в геометрии называются любые прямые, соединяющие две точки окружности.
Первое требование, предъявляемое к правильности определения - соразмерность определяемого и определяющего понятий по объему. Второе требование запрещает логический круг в определении. Нарушение этого требования сводится к тому, что определяемое понятие (дефиниецдум) определяется через определяющее понятие (дефиниенс), а последнее, в свою очередь, определяется через дефиниендум. Эта ошибка именуется как логический круг в определении (или тавтология), когда определяется "то же через то же" (по латыни: idem per idem).
Конечно, при формулировке подобных ошибочных определений используются другие слова, но смысл их остается тем же самым. Иногда такие определения, к сожалению, встречаются и в учебниках. Мы уже приводили пример в гл. 1, когда логику определяли как науку о правильном мышлении, но в дальнейшем выяснилось, что под правильным мышлением подразумевалось мышление, подчиняющееся законам логики. Обычно логические круги в определении допускаются тогда, когда определяемому понятию трудно найти определяющее понятие. Так происходит при определении весьма широких понятий (или категорий). В связи с этим, например, возможность иногда определяют как то, что может быть, а может и не быть, случайность - как то, что может произойти, а может и не произойти или случиться, количество - как то, что может быть измерено или выражено числом, хотя число служит для количественной характеристики объектов.
Третье требование постулирует, чтобы определения не были отрицательными.
Понятие, как мы неоднократно подчеркивали, служит для выделения определенного класса предметов, выявления их отличия от других классов, что достигается с помощью указания отличительных или существенных признаков предметов. Очевидно, что для этого необходимо использовать положительные, а не отрицательные утверждения. Ведь отрицательные утверждения указывают лишь на то, какими признаками не обладают предметы того или иного класса, а по ним
Нередко без отрицательных определений нельзя вообще обойтись. Так, в геометрии параллельные линии определяют как прямые, лежащие в одной плоскости и не имеющие общих точек, т.е. не пересекающихся. Попытка определить их иначе не увенчались успехом.
Четвертое требование напоминает скорее рекомендацию, чем строгое, не допускающее исключений правило. Всякое определение должно быть ясным, четким и недвусмысленным.
Ясность понятия зависит в первую очередь от ясности содержания, т.е. четкости выражения тех признаков, которые отличают один класс вещей от других классов. К сожалению, в гуманитарных науках, в силу сложности самого их предмета и борьбы мнений по разным проблемам, встречаются весьма нечеткие и неоднозначно определенные понятия. Так, даже в логике понятие часто определяется как форма мышления, раскрывающая сущность предметов. Но сущность выявляют также закон, теория и т.п. На самом деле понятие раскрывает не сущность вообще, а отличительные, важные, существенные в каком-либо отношении признаки исследуемых предметов и явлений.
2.3. Деление понятий и классификация
Термин "деление понятий", прочно утвердившийся в логике, может сбить с толку начинающего, так как на самом деле речь идет о делении объемов понятий.
Эта логическая операция сводится к разбиению класса, представляющего объем понятия, на подклассы, являющиеся объемами видов понятий. Самое важное требование при таком делении - соблюдение условия: деление должно производиться по единому признаку. Этот признак называется основанием деления, а объем, который подлежит делению, - объемам делимого понятия; полученные в результате деления подклассы - членами деления.
Цель деления состоит в том, чтобы разграничить и выделить из данного класса все подклассы по некоторому основанию. Очевидно, чтобы такое деление было исчерпывающим, оно должно удовлетворять следующим условиям, которые называют также правилами деления понятий.
1. Деление должно проводиться по вполне определенному основанию. Чаще всего в качестве основания берется один признак, но это не исключает возможности деления по двум или нескольким признакам.
2. Члены деления должны полностью исчерпать объем делимого понятия. Несоблюдение этого условия ведет к ошибке неполного деления либо делению с излишними членами. Так, деление треугольников на прямоугольные и остроугольные будет неполным, потому что в нем пропущены тупоугольные треугольники. Деление же их на равносторонние, разносторонние и равнобедренные содержит лишний член, поскольку равнобедренные треугольники имеют только две равные стороны, и поэтому входят в подкласс разносторонних треугольников.
3. При делении не должно быть скачков, т.е. оно должно быть непрерывным. Это означает, что все члены деления должны быть ближайшими видами делимого понятия. Например, деление сказуемых в предложении на простые, составные именные и составные глагольные нарушает это условие. Чтобы деление было непрерывным, надо было сначала разделить сказуемые на простые и составные, а составные - на именные и глагольные.
Особым приемом является дихотомическое деление, которое состоит в разбиении объема делимого понятия на два подкласса, взаимно исключающих друг друга. (Слово "дихотомия" греческого происхождения, означающее "сечение на две части".) Отсюда следует, что если предметам одного подкласса присущ признак А, то он будет отсутствовать у предметов другого подкласса.
От других видов деления дихотомическое отличается тем, что оно является двучленным. Так, например, вещи по окраске могут быть красными, белыми, черными, желтыми и т.д. Но дихотомическим будет лишь такое деление, когда члены деления составляют два подкласса предметов с противоречащими признаками А и не-А. Дихотомическим будет деление химических элементов на металлы и неметаллы, цветов - на белые и небелые, животных - на позвоночные и непозвоночные и т.д. Однако деление цветов на белый и черный не является дихотомическим, потому что белый и черный цвет не исчерпывают объема понятия "цвет".