Логика и аргументация: Учебное пособие для вузов.
Шрифт:
Поскольку проверка формулы на общезначимость, как мы видели, представляет собой крайне трудную задачу, то выход часто ищут в противоположной операции: в установлении необщезначимости формулы. Для этого в принципе достаточно найти такую единственную строку в таблице, где формула принимает ложное значение. В приведенном выше примере (см. табл.13) этими строками являются 8 и 11.
В некоторых случаях поиск необщезначимой формулы может быть ускорен, если воспользоваться сокращенными способами, основанными на определениях логических операций дизъюнкции, конъюнкции и импликации. Например, если нам было бы известно, что один из дизъюнктивных членов рассматриваемой формулы был бы истинен, тогда истинной была бы вся формула. Если же ложным оказался один член конъюнкции, то вся формула окажется ложной.
4.4. Логическое следование
Чтобы установить, следует ли логически формула В исчисления предикатов из множества формул A1, А2,..., Am (m > 1),
Символически это определение можно представить в следующей форме:
A1 ,A2, ,Am | = B
где знак | = обозначает следование.
В приведенном выше определении логического следования свободные переменные рассматриваются как обозначающие некоторые элементы из универсума рассуждения. Поэтому в течение всего рассуждения они, так же, как и предикаты, должны оставаться фиксированными. При другом определении переменные могут быть различными в разных формулах. Чтобы яснее представлять различия между двумя подходами к определению логического следования, обратимся к языку алгебры, в котором, как известно, различают, с одной стороны, уравнения (или условные равенства), а с другой - тождества (или тождественные равенства). В то время как уравнению удовлетворяют только определенные значения переменной, называемые его корнями, тождество выполняется при любых значениях переменной. Именно поэтому уравнения считаются условными равенствами. Действительно, например, в уравнении х2 + 2х - 3 = 0 левая часть равняется правой только при значениях х = 1 и х = -3, а в тождестве (х + 1)2 = х2 + 2х + 1 вместо переменной можно подставлять любые числа.
Соответственно этому будем говорить, что для переменных в уравнениях дается условная интерпретация, а в тождествах - интерпретация всеобщности. При условной интерпретации переменной х в определенном допущении А(х) - куда х входит свободно - любое следствие, полученное из него, должно относиться к тому же самому элементу из универсума А(х). Иными словами, переменная х в этом случае фиксирована, так как представляет то же самое число в процессе рассуждения. При тождественной интерпретации значения переменных могут изменяться. Отсюда становится ясным, что приведенное выше определение для логического следования в исчислении предикатов соответствует условной интерпретации свободных переменных, входящих в допущения A1, А2,..., An. Чтобы сформулировать другое определение следования, необходимо опираться на интерпретацию всеобщности для всех переменных. Для этого необходимо, во- первых, связать все допущения А1, А2, ..., Am кванторами общности, а во-вторых, построить таблицы истинности, как и в первом определении.
4.5. Выводимость и доказуемость
Приведенные выше понятия общезначимой формулы логического следования в конечном итоге опираются на построение таблицы истинности. Но проверка с помощью таблиц оказывается, как мы видели, и крайне громоздким, и весьма неэффективным средством. Такой способ проверки целесообразно использовать для выявления общезначимых формул и логического следования в исчислении высказываний, где с помощью таблицы истинности мы можем всегда ответить на вопрос, является ли данная формула общезначимой или законом логики в этом исчислении, а также следует ли формула В из формул A1, А2,..., Аm. Когда существует определенная процедура, посредством которой можно за конечное число шагов разрешить определенный вопрос, тогда в логике и математике говорят, что для ответа на него существует алгоритм или эффективная процедура. Мы можем, например, сказать, что для сложения, умножения, деления и других хорошо известных математических действий существуют определенные алгоритмы. То же самое относится и к исчислению высказываний, где с помощью таблицы истинности всегда можно в конечном итоге ответить на вопрос, является ли данная формула законом исчисления или нет, либо следует ли рассматриваемая формула из другой или других формул.
В исчислении предикатов мы встречаемся с принципиальными трудностями, поскольку не можем проверить неограниченное количество интерпретаций, которые соответствуют заданной формуле из ее универсума рассуждений. Вот почему становится необходимым обратиться к другому способу проверки, основанному на выводе формул по точно установленным правилам. Такая необходимость связана с тем, что для исчисления предикатов не существует алгоритмической процедуры, с помощью которой
Однако это не означает, что такой ответ нельзя найти для конкретных формул. Мы уже убедились, что в ряде частных случаев, построив таблицу истинности для соответствующей формулы, можно определить, является ли она общезначимой или законом логики в исчислении предикатов. То же самое следует сказать о процессе вывода одних формул из других по соответствующим правилам исчисления. Отсюда становится ясным, что процесс вывода следствий в логике предикатов носит творческий характер, поскольку он требует догадки и интуиции. Другими словами, отсутствие алгоритма вовсе не исключает возможности поиска решения отдельных задач, для которых не существует общего метода решения. Творческий характер мышления проявляется именно при решении нестандартных проблем. Там, где есть алгоритмы, задачу можно программировать и использовать для ее решения компьютер, т.е., проще говоря, заменить рассуждение вычислением. Напротив, там, где нет разрешающей процедуры, или алгоритма, приходится строить догадки и гипотезы, проверять их и отбрасывать негодные, вновь и вновь пробовать и проверять, чтобы найти требуемое решение. В целях облегчения такого поиска существуют определенные эвристические методы, которые хотя и не гарантируют безошибочно верного результата, но могут в значительной мере приблизить к его достижению.
Одним из таких методов в исчислении предикатов является способ построения аналитических, или, точнее, аналитико-семантических таблиц. Этот метод основывается, во-первых, на рассуждении от противного, т.е. сначала допускается, что рассматриваемая формула является необщезначимой, или данная формула логически не следует из других. Затем доказывают, что такое допущение приводит к противоречию, и поэтому оно опровергается. Во-вторых, для такого рассуждения строится аналитическая таблица, каждая строка которой содержит определенный список формул. В первой строке таблицы записывается антитезис, означающий, либо отрицание общезначимой формулы А, либо некоторого следствия, т.е. допускается истинность его посылок A1, А2,..., An и ложность заключения (— В). Переход от одной строки таблицы к другой связан с преобразованием формул с помощью определенных правил редукции, опирающихся на семантический анализ смысла таких логических связок, как отрицание, конъюнкция, дизъюнкция, импликация, а также кванторов общности и существования. В-третьих, таблица считается замкнутой, если в некоторой ее строке в каждом списке формул встречается определенная формула С вместе с ее отрицанием —C. Полученное противоречие свидетельствует о том, что принятое допущение необоснованно и, следовательно, доказывает либо общезначимость исходной формулы A, либо правильность следствия В из посылок A1, A2,..., Аm, т.е. A1, А2,..., Аm | = В. Если же аналитическая таблица остается незамкнутой, то нельзя однозначно решить вопрос об общезначимости формулы А или логического следствия A1, А2,..., Аm | = В. Ведь подобный результат мог бы свидетельствовать не только о необщезначимости формулы и неправильности логического следствия, но и о том, что нам не удалось найти комбинацию формул, которая привела бы к замыканию таблицы.
Решающая роль при построении аналитической таблицы принадлежит правилам редукции, с помощью которых происходит переход от формул на строке n таблицы к следующей строке n + 1.
Правило конъюнкции . Допустим, что на одной строке таблицы мы имеем список формул: Г, А В, , где Г - последовательность формул, предшествующих конъюнкции, а д - последовательность формул, следующая за ней. Поскольку из истинности конъюнкции можно сделать вывод об истинности каждого ее члена, то всюду, где она встречается, вместо истинной конъюнкции можно переходить к ее членам. В результате можно перейти от некоторой строки n к строке n + 1, оставляя при этом остальные списки неизменными:
Правило дизъюнкции разрешает перейти от строки, в которой встречается она, к другой, где вместо дизъюнкции встречаются два списка, в одном из которых находится один дизъюнктивный член, во втором - другой:
Это правило основывается на том, что дизъюнкция является истинной, если по крайней мере один из ее членов истинен, а поэтому при переходе от одной строки к другой мы получаем два списка, отделенных вертикальной чертой, в одном из которых встречается один член, во втором - другой.