Логика случая. О природе и происхождении биологической эволюции
Шрифт:
Первая возможность имеет отношение к нахождению условий, существовавших на первичной Земле и каким-то образом сделавших происхождение жизни «легким». Ячейки Рассела продвигают нас на этом пути, но, видимо, недостаточно далеко: даже в подобных проточных реакторах, богатых энергией и катализаторами, сочетание всех необходимых процессов было бы крайне редким.
Вторая возможность может быть рассмотрена в контексте всей Вселенной. Зададимся вопросом, сколько существует планет с благоприятными условиями для возникновения жизни, иными словами, сколько попыток возникновения жизни всего было сделано. В данном разделе мы рассмотрим эту линию рассуждений с точки зрения современной физической космологии.
В XX веке космология прошла драматический путь от странного (и не особенно авторитетного) философского направления к полноценному, быстро развивающемуся разделу физики, прочно опирающемуся на многочисленные научные наблюдения. Ведущее направление в сегодняшней космологии сосредоточивается на так называемой инфляции, периоде экспоненциально быстрого первоначального расширения Вселенной (Carroll, 2010; Guth, 1998a; Guth and Kaiser, 2005; Vilenkin, 2007). В наиболее правдоподобных, самосогласованных моделях инфляция вечна, с бесконечным числом островных вселенных (или
Модель МММ тесно связана с антропным принципом (иногда называемым антропным отбором), спорной, но мощной и популярной среди космологов концепцией (Barrow and Tipler, 1988; Carter, 1974; Livio and Rees, 2005). Согласно антропному принципу, единственная причина, по которой наша Вселенная имеет свои характерные параметры, состоит в том, что в противном случае в этой Вселенной не было бы никаких наблюдателей [134] . В такой форме так называемый «слабый» антропный принцип может быть реалистично определен только в контексте огромной (или, еще лучше, бесконечной) мультивселенной. В модели МММ антропный отбор имеет простой смысл: среди огромного числа наборов параметров, существующих в мультивселенной (в бесконечном числе экземпляров каждый), наша Вселенная должна иметь именно такие параметры, которые способствуют возникновению и поддержанию сложных форм жизни. Иногда говорят, что наша Вселенная принадлежит «биофильной области» мультивселенной (Livio and Rees, 2005). Сам термин «антропный принцип» можно считать неудачным, так как он может быть истолкован как предполагающий некую особую важность людей или, в более общем случае, сознательных наблюдателей или, что еще хуже, привлечь телеологические интерпретации. Такой взгляд на антропный принцип совершенно неверен; на самом деле он представляет собой просто «отбор наблюдателя» (Bostrom, 2002). Тот факт, что в этой Вселенной имеется жизнь, строго ограничивает ее характеристики: по меньшей мере, наша часть Вселенной должна содержать галактики и планетные системы, а не только массивные черные дыры или частицы разреженного газа, являющиеся в принципе более вероятными состояниями с высокой энтропией.
134
Конечно, это формулировка «слабого» антропного принципа как единственно разумной научной интерпретации антропного рассуждения. Так называемый «сильный» антропный принцип – это телеологическое представление о том, что наше человеческое существование является, в некоем загадочном смысле, «целью» эволюции Вселенной. Как таковая, эта идея не принадлежит к области науки (J. D. Barrow and F. J. Tipler. The Anthropic Cosmological Principle. Oxford: Oxford University Press, 1988).
В сравнении со старыми космологическими концепциями, рассматривавшими конечную Вселенную, модель МММ меняет самые определения возможного, вероятного и случайного по отношению к любому историческому сценарию. Проще говоря, вероятность реализации любого сценария, не запрещенного законами сохранения, в бесконечной мультивселенной в точности равна единице. С другой стороны, вероятность того, что данный сценарий реализуется в данной (островной) вселенной, равна частоте этого сценария в мультивселенной и может быть исчезающе малой. С несколько иной точки зрения известная идея второго начала термодинамики, будучи истинной лишь в статистическом смысле, обретает буквальный смысл в бесконечной мультивселенной: любое нарушение второго начала, позволенное законами сохранения, действительно случилось, причем бесконечное число раз. Таким образом, спонтанное возникновение сложных систем, которое могло бы считаться практически невозможным в конечной вселенной, становится не только возможным, но и неизбежным в МММ, хотя априорная вероятность подавляющего большинства историй, происходящих в данной вселенной, исчезающе мала. Эта новая сила случайности, подкрепленная антропным рассуждением, имеет глубокие последствия для нашего понимания любого явления во Вселенной, не исключая и жизнь на Земле (Koonin, 2007b).
История жизни не может не включать в себя важнейший переход от случая к биологической эволюции (см. рис. 12-6). Синтез нуклеотидов и полинуклеотидов по крайней мере среднего размера не мог возникнуть биологически и, следовательно, произошел абиогенным путем, то есть фактически случайно, при помощи химического отбора, как, например, выживание более стабильных видов РНК. На другом конце спектра не может быть никаких разумных сомнений в том, что первые клетки произошли в результате биологической эволюции на ее доклеточной стадии (см. гл. 11). Где-то между этими крайностями имеется переход, порог биологической эволюции. Чаще всего, с появлением концепции мира РНК, этот порог неявно связывается с появлением репликации молекул РНК. Трансляция, как полагают, возникла позже, в результате специфического процесса, движимого отбором. Как уже говорилось в предыдущем разделе, как катализируемая рибозимами репликация, так и, особенно, эволюция трансляции в мире РНК сталкиваются с огромными трудностями. Модель МММ значительно расширяет интервал на оси организационной сложности, где порог может быть преодолен через появление сложности, возникшей случайно (см. рис. 12-6). В этой модели возможность того, что прорывная стадия наступления биологической эволюции была состоянием высокой сложности, не может быть сброшена со счетов, какой бы невероятной (то есть редкой в смысле
Модель МММ не только допускает, но и гарантирует, что где-то в бесконечной мультивселенной (более того, в каждой отдельной бесконечной вселенной) такая сложная система появится; кроме того, существует бесконечное число этих систем. Таким образом, уместный вопрос состоит не в том, возникла ли система произвольной сложности спонтанно, по воле случая (поскольку МММ гарантирует это), но в том, каков был наиболее вероятный прорывный этап на Земле, который должен быть отнесен к случайности в соответствии с антропным подходом. Я полагаю, что, учитывая серьезные проблемы эволюционных сценариев, разработанных, чтобы объяснить происхождение репликации и трансляции путем биологической эволюции, следует принимать всерьез возможность того, что порог биологической эволюции соответствует очень сложной стадии – возможно, системе репликации вкупе с трансляцией и с белковыми полимеразами, отвечающими за репликацию РНК. Эта гипотеза (которую я называю антропной химической эволюцией, АХЭ), конечно, не исключает особой важности рибозимов в ранней биологии, в частности, в первичной системе трансляции, как предполагается исходя из сравнительного анализа белковых компонентов аппарата трансляции (см. выше в этой главе). Тем не менее следствием из модели АХЭ является то, что мир РНК, каким он описывается в настоящее время, – огромное сообщество реплицирующихся молекул РНК, наделенных различными каталитическими возможностями, но не содержащий ни системы трансляции, ни генетически кодируемых белков, – мог никогда и не существовать.
Согласно гипотезе АХЭ, основные элементы системы трансляции, а именно состоящая только из РНК рибосома и избирательные адаптеры, по крайней мере для некоего подмножества из двадцати современных белковых аминокислот, возникли случайно, в соответствии с антропным принципом. Согласно этой модели, прорывная система, запустившая биологическую эволюцию, была примитивной, но достаточно эффективной РНК-машиной трансляции, способной транслировать экзогенную РНК, генерируя функциональные белки, в том числе репликазы. Достаточное разнообразие случайно синтезированных РНК, включая и те, что кодировали белки, обладающие активностью репликазы (хоть первоначально и низкой), является еще одной антропно определенной особенностью тех мест на древней Земле, где зародилась жизнь. Как уже говорилось в предыдущем разделе, сети неорганических ячеек в гидротермальных источниках могли играть роль добиотических химических реакторов. Существование такой сети само по себе также является частью антропного сценария.
В таких условиях появление основанного на РНК механизма трансляции привело бы к производству репликазы и, с последующей репликацией РНК, к критическому переходу от антропной причинности к биологическому отбору (см. рис. 12-6). В принципе начало биологической эволюции можно себе представить и с репликазой как единственным изначально активным белком. Однако, учитывая вероятное существование реакторов, производящих РНК, которые обсуждались ранее в этой главе, вполне возможно, что с появлением трансляции другие случайные последовательности РНК послужили основой предковых форм наиболее распространенных белковых укладок, порождая несколько белковых функций (например, РНК-связывающие белки и примитивные ферменты, катализирующие синтез нуклеотидов) и тем самым придавая минимально необходимую устойчивость формирующейся биологической системе. Появление этих укладок можно назвать Большим взрывом белковой эволюции.
Как уже отмечалось, современный универсальный генетический код гораздо более надежен, чем был бы случайный, по отношению к мутационным и, вероятно также, к трансляционным ошибкам. Эта устойчивость проявляется и в очевидной неслучайности структуры кода, выражающейся в первую очередь в том, что серия кодонов, которые отличаются только третьей позицией, кодирует либо одну и ту же, либо две подобные аминокислоты, и в других особенностях соответствия кодонов аминокислотам (Koonin and Novozhilov, 2009). Примечательно, что предполагаемый предковый «дублетный» код, в котором третья позиция не несла никакой информации, мог быть даже более надежным, чем современный (Novozhilov and Koonin, 2009). Надежность, как обычно предполагается, эволюционировала в ходе оптимизации кода. Однако модель АХЭ предлагает альтернативную точку зрения, при которой базовая структура кода возникла по чистой случайности, поскольку только коды с определенным минимальным уровнем надежности позволили бы функциональной репликазе появиться в прорывной системе. Конечно, этот сценарий не исключает и последующей корректировки кода биологической эволюцией, что, по всей вероятности, в действительности произошло.
Таким образом, гипотеза АХЭ снимает парадоксы происхождения репликации и трансляции предположением о том, что оба этих процесса, в их примитивных формах, не произошли в результате биологической эволюции, а возникли случайно, как связанная система, в соответствии с антропным принципом.
Гипотеза АХЭ, несомненно, должна показаться большинству эволюционных биологов нелепой и возмутительной, поскольку она уклоняется от поисков «механизмов» доклеточной эволюции. Тем не менее существуют смягчающие обстоятельства. Во-первых, постулируемая возможность возникновения сопряженной репликационно-трансляционной системы не требует никаких неизвестных процессов. Напротив, для нее необходимы только хорошо известные, обычные реакции, такие как полимеризация нуклеотидов и аминокислот и фосфорилирование/дефосфорилирование нуклеотидов; при этом нужны только распространенные в химии и биохимии взаимодействия. Как уже отмечалось в этой главе, элементарные реакции, необходимые для трансляции (активация аминокислот, аминоацилирование РНК и транспептидация), легко моделируются с помощью рибозимов, в противоположность репликации РНК, которой, как известно, трудно достичь в отсутствие белков. Во-вторых, исключая разве что полную неадекватность нынешнего понимания условий на первичной Земле, любые мыслимые сценарии эволюции жизни обязательно требуют сочетания маловероятных условий и событий до начала биологической эволюции. Список таких событий включает в себя абиогенный синтез довольно сложных и не очень устойчивых органических молекул, таких как нуклеотиды, накопление этих молекул в соответствующих ячейках до высоких концентраций и их полимеризацию с получением полинуклеотидов достаточного размера и разнообразия. Таким образом, независимо от космологических соображений, некоторые формы антропной причинности представляются неизбежным аспектом эволюции жизни (см. рис. 12-6).