Чтение онлайн

на главную - закладки

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

Теперь остается решить представленные дифференциальные уравнения получить графики полученных решений, представленные на рис. 11.10. В данном случае частоты сигнала и собственных колебании системы заметно различаются и выходной сигнал системы представляет собой, в основном, выделенную вторую гармонику воздействия.

Рис. 11.10. Решение дифференциальных уравнений и его визуализация

Разумеется, представленный вариант анализа носит частный характер, поскольку синтезируется

вполне конкретный вид сигнала — прямоугольные импульсы с заданными выше параметрами. Однако, если использовать разложение в ряд Фурье произвольного воздействия, то подобным способом можно решить задачу получения реакции колебательной (а, в принципе, любой линейной) системы на заданное воздействие.

11.1.5. Улучшенное моделирование свободных колебаний

Вернемся к задаче моделирования системы второго порядка и попытаемся найти решения в более удобном виде, обычно приводимом в учебниках после ряда преобразований. Для этого достаточно воспользоваться пакетом расширения DEtools. Рис. 11.11 показывает начало документа с составленным дифференциальным уравнением и его решением. Нетрудно заметить, что теперь решение представлено в классическом виде, который обычно приводится в учебниках по теории колебаний.

Рис. 11.11. Решение дифференциального уравнения свободных колебаний с применением пакета DEtools

На рис. 11.12 показана вторая часть документа с решением для конкретных данных и построением графика временной зависимости свободных колебаний. Нетрудно заметить, что свободные колебания системы имеют вид затухающих синусоидальных колебаний. Вы можете проверить, что при р<0 колебания будут нарастать по экспоненциальному закону, что характерно для генераторных систем.

Рис. 11.12. Пример вычисления временной зависимости свободных колебаний и построения их графика

Нередко о характере колебаний удобно судить по фазовому портрету колебаний. Он задается графиком в параметрической форме, при которой по одной оси откладывается зависимость у(t), а по другой — ее производная. Это показано на рис. 11.13. Фазовый портрет в данном случае представляет собой сворачивающуюся спираль.

Рис. 11.13. Фазовый портрет затухающих свободных колебаний

11.1.6. Улучшенное моделирование колебаний при синусоидальном воздействии

По аналогии с последним примером можно рассмотреть поведение системы второго порядка при синусоидальном воздействии. На рис. 11.14 представлено начало документа, в котором задано исходное дифференциальное уравнение и получено его общее и частное аналитические решения.

Рис. 11.14. Пример аналитического решения задачи на поведение системы второго порядка при синусоидальном воздействии

На рис. 11.15 представлены временные диаграммы реакции системы и синусоидального воздействия. Кроме того, построен фазовый портрет колебаний. Он заметно отличается от спирали и хорошо иллюстрирует сложность колебаний в начале их развития.

Рис. 11.15.

Результаты моделирования цепи второго порядка при синусоидальном воздействии

К сожалению, применение пакета расширения DEtools усложняет функцию dsolve решения дифференциальных уравнений. В результате время моделирования даже простых систем удлиняется до минут, а более сложные системы могут потребовать куда более длительного времени моделирования. В этом случае может оказаться целесообразным отказаться от получения аналитических зависимостей для результатов моделирования и перейти к численному моделированию.

11.1.7. Улучшенное моделирование колебаний при пилообразном воздействии

Рассмотрим методику улучшенного моделирования еще на одном примере — вычислении реакции системы при пилообразном воздействии. На рис. 11.16 показано задание такого воздействия с помощью функции floor. Для упрощения расчетных выражений амплитуда и период воздействия взяты равными я. Поскольку в данном случае аналитическое решение получить невозможно (функция floor не позволяет этого), то заменим воздействие рядом Фурье. Его коэффициенты также представлены на рис. 11.16.

Рис. 11.16. Начало моделирование системы с пилообразным воздействием, представленным рядом Фурье

На рис. 11.17 представлены графики воздействия в идеальном случае и при его представлении рядом Фурье с пятью гармоники. Показано также аналитическое решение для временной зависимости y(t) при таком воздействии.

Рис. 11.17. Воздействие и временная зависимость реакции системы при пилообразной форме воздействия

Наконец на рис. 11.18 показан график реакции системы на пилообразное воздействие и фазовый портрет колебаний в ней. Нетрудно заметить, что форма воздействия достаточно слабо влияет на форму временной зависимости реакции системы на заданное воздействие. Это следствие резонансных свойств системы.

Рис. 11.18. Реакция системы на пилообразное воздействие и фазовый портрет колебании при таком воздействии

Нелинейные системы второго порядка, к сожалению, не имеют общих аналитических решений и для моделирования таких систем следует использовать численные методы решения дифференциальных уравнений. Примеры такого рода уже приводились в главе 7, посвященной решению дифференциальных уравнений. Другие примеры вы найдете ниже.

11.1.8. Анализ и моделирование линейных систем операторным методом

Произвольные линейные системы могут анализироваться и моделироваться хорошо известным (особенно в электротехнике и радиотехнике) операторным методом. При этом методе система и ее воздействие представляются операторными выражениями, т. е. в виде функций параметра — оператора Лапласа s (в литературе встречается и обозначение p). Не вникая в детали этого общеизвестного метода, рассмотрим конкретный пример (файл linsys). Он, для сравнения с предшествующими примерами, дан для системы второго порядка, хотя в данном случае никаких ограничений на порядок системы нет.

Поделиться:
Популярные книги

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии

Повелитель механического легиона. Том III

Лисицин Евгений
3. Повелитель механического легиона
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том III

Генерал Скала и сиротка

Суббота Светлана
1. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Генерал Скала и сиротка

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Повелитель механического легиона. Том II

Лисицин Евгений
2. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том II

Жаба с кошельком

Донцова Дарья
19. Любительница частного сыска Даша Васильева
Детективы:
иронические детективы
8.26
рейтинг книги
Жаба с кошельком

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Я еще князь. Книга XX

Дрейк Сириус
20. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще князь. Книга XX

Книга 4. Игра Кота

Прокофьев Роман Юрьевич
4. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
рпг
6.68
рейтинг книги
Книга 4. Игра Кота

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II