Maple 9.5/10 в математике, физике и образовании
Шрифт:
Теперь приступим к тестированию фильтра. Зададим входной сигнал в виде зашумленного меандра с частотой 500 Гц и размахом напряжения 2 В:
Временная
Рис. 11.35. Синтезированный входной сигнал
Вычислим реакцию фильтра на входной сигнал:
Построим график выходного сигнала.
Временна́я зависимость выходного сигнала показана на рис. 11.36. Нетрудно заметить, что, в конце концов, выходной сигнал вырождается в пятую гармонику входного сигнала, но этому предшествует довольно заметный переходной процесс. Он связан с узкополосностью данного фильтра.
Рис. 11.36. Временна́я зависимость выходного сигнала цифрового фильтра
Вычислим спектры входного и выходного сигналов, подготовив массивы выборок сигналов и применив прямое преобразование Фурье с помощью функции FFT:
Построим график спектра входного сигнала, ограничив масштаб по амплитуде значением 0.5 В:
Этот график представлен на рис. 11.37. Из него хорошо видно, что спектральный состав входного сигнала представлен только нечетными гармониками, амплитуда которых убывает по мере роста номера гармоники. Пятая гармоника на частоте 2500 Гц находится посередине полосы пропускания фильтра, ограниченной граничными частотами фильтра 2300 и 2700 Гц. Заметны также беспорядочные спектральные линии шума сигнала
Рис. 11.37. Спектрограмма входного сигнала
Теперь построим график спектра выходного сигнала:
Он представлен на рис. 11.38. Хорошо видно эффективное выделение пятой гармоники сигнала и прилегающей к ней узкой полосы шумового спектра.
Рис. 11.38. Спектрограмма выходного сигнала цифрового фильтра
Приведенные данные свидетельствуют, что спроектированный фильтр полностью отвечает заданным требованиям и обеспечивает уверенное выделение пятой гармоники зашумленного меандра. По образу и подобию данного документа можно выполнить проектирование и других видов цифровых фильтров.
11.3.5. Моделирование цепи на туннельном диоде
А теперь займемся моделированием явно нелинейной цепи. Выполним его для цепи, которая состоит из последовательно включенных источника напряжения Es, резистора Rs, индуктивности L и туннельного диода, имеющий N-образную вольт-амперную характеристику (ВАХ) — см. файл tdc. Туннельный диод обладает емкостью С, что имитируется конденсатором С, подключенным параллельно туннельному диоду.
Пусть ВАХ реального туннельного диода задана выражением:
Построим график ВАХ:
Этот график представлен на рис. 11.39. Нетрудно заметить, что ВАХ туннельного диода не только резко нелинейна, но и содержит протяженный участок отрицательной дифференциальной проводимости, на котором ток падает с ростом напряжения на диоде. Это является признаком того, что такая цепь способна на переменном токе отдавать энергию во внешнюю цепь и приводить к возникновению колебаний в ней различного типа.
Рис. 11.39. ВАХ туннельного диода
Работа цепи описывается системой из двух дифференциальных уравнений:
Пусть задано Es=0,35 В, Rs=15 Ом, C=10∙10– 12, L=30∙10– 9 и максимальное время моделирования tm=10∙10– 9. Итак, задаем исходные данные: