Чтение онлайн

на главную - закладки

Жанры

Машинное обучение и Искусственный Интеллект
Шрифт:

Мы можем назначить дискретные результаты y на основе многих входных признаков x.

В примере с сердцем, учитывая набор признаков x, таких как удары в минуту, вес тела, возраст и пол, алгоритм классифицирует выходные данные y как две категории: истина или ложь, предсказывая, будет ли сердце работать нормально или нет.

В других классификационных моделях мы можем классифицировать результаты по более чем двум категориям.

Например, прогнозирование, является ли данный рецепт рецептом индийского, китайского, японского или тайского блюда.

И

с помощью классификации мы можем извлечь особенности из данных.

Особенности в этом примере сердцем, это сердечный ритм или возраст.

Особенности – это отличительные свойства шаблонов ввода, которые помогают определить категории вывода.

Здесь каждый столбец является особенностью, а каждая строка – точкой ввода данных.

Классификация – это процесс прогнозирования категории заданных точек данных.

И наш классификатор использует обучающие данные, чтобы понять, как входные переменные относятся к этой категории.

Что именно мы подразумеваем под обучением?

Обучение подразумевает использование определенного алгоритма обучения для определения и разработки параметров модели.

Хотя для этого есть много разных алгоритмов, с точки зрения непрофессионала, если вы тренируете модель, чтобы предсказать, будет ли сердце работать нормально или нет, есть истинные или ложные значения, и вы будете показывать алгоритму некоторые реальные данные, помеченные как истинные, затем снова показывая данные, помеченные как ложные, и вы будете повторять этот процесс с данными, имеющими истинные или ложные значения.

И алгоритм будет изменять свои внутренние параметры до тех пор, пока он не научится распознавать данные, которые указывают на то, что есть сердечная недостаточность или ее нет.

При машинном обучении мы обычно берем набор данных и делим его на три набора: наборы обучения, проверки и тестирования.

Набор обучения – это данные, используемые для обучения алгоритма.

Набор проверки используется для проверки наших результатов и тонкой настройки параметров алгоритмов.

Данные тестирования – это данные, которые модель никогда не видела прежде и которые используются для оценки того, насколько хороша наша модель.

Опять же, чтобы повторить, модель машинного обучения – это алгоритм, используемый для поиска закономерностей в данных без программирования в явном виде.

В то время как машинное обучение является подмножеством искусственного интеллекта, глубокое обучение является специализированным подмножеством машинного обучения.

Глубокое обучение основывается на алгоритмах машинного обучения, которые основываются на структуре и функциях мозга, и эти алгоритмы называются искусственными нейронными сетями.

Эти сети

предназначены для непрерывного обучения в процессе работы для повышения качества и точности результатов.

Эти системы могут обучаться на неструктурированных данных, таких как фотографии, видео и аудиофайлы.

Алгоритмы глубокого обучения напрямую не отображают входные данные в выходные.

Вместо этого они полагаются на несколько слоев обработки.

Каждый такой слой передает свой вывод следующему слою, который обрабатывает его и передает его следующему.

Именно поэтому такая система из многочисленных слоев называется глубоким обучением.

При создании алгоритмов глубокого обучения разработчики и инженеры настраивают количество слоев и тип функций, которые соединяют выходы каждого слоя со входами следующего.

Затем они обучают модель, предоставляя множество размеченных примеров.

Например, вы даете алгоритму глубокого изучения тысячи изображений и метки, которые соответствуют содержанию каждого изображения.

Алгоритм будет запускать эти примеры через свою многоуровневую нейронную сеть и будет подгонять веса переменных в каждом слое нейронной сети, чтобы иметь возможность обнаруживать общие шаблоны, которые определяют изображения с похожими метками.

Глубокое обучение устраняет одну из основных проблем, с которой сталкивались алгоритмы обучения предыдущего поколения.

В то время как эффективность и производительность алгоритмов машинного обучения предыдущего поколения не улучшалась по мере роста наборов данных, алгоритмы глубокого обучения продолжают улучшаться по мере поступления большего количества данных.

Глубокое обучение оказалось очень эффективным при выполнении различных задач, включая распознавание и транскрипцию голоса, распознавание лиц, медицинскую визуализацию и языковой перевод.

Глубокое обучение также является одним из основных компонентов беспилотных автомобилей.

Искусственная нейронная сеть представляет собой совокупность мелких единиц, называемых нейронами, которые представляют собой вычислительные единицы, смоделированные по способу обработки информации человеческим мозгом.

Искусственные нейронные сети заимствуют некоторые идеи из биологической нейронной сети мозга, чтобы приблизить некоторые результаты его обработки.

Эти единицы или нейроны принимают поступающие данные, также как и биологические нейронные сети, и со временем учатся принимать решения.

Нейронные сети учатся через процесс, называемый обратным распространением.

Например, при преобразовании речи в текст, в нейронных сетях вместо кодирования правил вы предоставляете образцы голоса и соответствующий им текст.

И нейронная сеть находит общие шаблоны произношения слов, а затем учится сопоставлять новые голосовые записи с соответствующими им текстами.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Последний реанорец. Том III

Павлов Вел
2. Высшая Речь
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Последний реанорец. Том III

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Предопределение

Осадчук Алексей Витальевич
9. Последняя жизнь
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Предопределение

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Двойник Короля

Скабер Артемий
1. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля

На границе империй. Том 10. Часть 7

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 7

Страж Кодекса. Книга V

Романов Илья Николаевич
5. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга V

Кадет Морозов

Шелег Дмитрий Витальевич
4. Живой лёд
Фантастика:
боевая фантастика
5.72
рейтинг книги
Кадет Морозов

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога