Чтение онлайн

на главную - закладки

Жанры

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Шрифт:

Хотя собака – это не уменьшенная женщина, этот пример является частным случаем общего правила масштабирования метаболизма в зависимости от размеров. Оно действует для всего спектра млекопитающих, от мельчайших землероек весом всего несколько граммов до гигантских синих китов, весящих в сотни миллионов раз больше. Фундаментальное следствие из этого правила состоит в том, что более крупное животное (в этом примере – женщина) имеет больший удельный коэффициент полезного действия на грамм массы, чем животное меньшего размера (ее собака), так как для поддержки существования каждого грамма его тела требуется меньше энергии (приблизительно на 25 %). К слову, у ее лошади этот КПД будет выше. Такое систематическое повышение производительности с увеличением размера известно под названием экономии на масштабе. В самых общих чертах этот принцип гласит, что чем больше размер, тем меньше ресурсов на душу населения (или, в случае животных, на клетку или на грамм массы тела) требуется

для выживания. Отметим, что такое поведение противоположно случаю увеличенной отдачи от масштаба, которая проявлялась в ВВП городов: если там подушная величина возрастала с увеличением размеров, то в случае экономии на масштабе подушная величина становится тем меньше, чем больше размер. Такое масштабирование называют сублинейным масштабированием.

Размеры и масштаб играют важную роль в определении черт поведения, общих для чрезвычайно сложных, развивающихся систем, и значительная часть этой книги посвящена объяснению и пониманию такого нелинейного поведения, а также возможностей его использования для рассмотрения широкого круга вопросов, примеры которых взяты из самых разных отраслей науки, техники, экономики и бизнеса, а также повседневной жизни, научной фантастики и спорта.

6. Масштабирование и сложность: возникновение, самоорганизация и жизнестойкость

На немногочисленных предшествующих страницах я уже успел несколько раз употребить термин сложность и бесцеремонно называл системы сложными, как если бы это название было и хорошо понятным, и точно определенным. На самом деле и то и другое неверно, и я хотел бы сделать здесь небольшое отступление, чтобы поговорить об этом изрядно перегруженном понятии. Дело в том, что почти все те системы, о которых я собираюсь говорить, обычно считают «сложными».

Далеко не я один использую это слово и его многочисленные производные походя, не давая ему определения. За последнюю четверть века такие термины, как сложные адаптивные системы, теория сложности, эмерджентное поведение, самоорганизация, жизнестойкость и адаптивная нелинейная динамика, начали распространяться не только в научной литературе, но и в публикациях делового и корпоративного мира, а также в неспециальных средствах массовой информации.

Чтобы подготовить почву для этого разговора, я хотел бы процитировать двух выдающихся мыслителей, физика и юриста. Первый из них – это знаменитый физик Стивен Хокинг. На рубеже этого тысячелетия он давал интервью [15] , в котором ему задали следующий вопрос:

– Некоторые утверждают, что если ХХ век был веком физики, то сейчас мы стоим на пороге века биологии. Что вы об этом думаете?

Хокинг ответил:

– Я думаю, что следующий век будет веком сложности.

15

Интервью со Стивеном Хокингом приводится в статье: Unified Theory Is Getting Closer, Hawking Predicts // San Jose Mercury News. 2000. Jan. 23. www.mercurycenter.com/resources/search.

Я всецело разделяю это мнение. Как, надеюсь, я уже объяснил, для решения множества встающих перед нами сложных общественных проблем нам срочно нужна теория сложных адаптивных систем.

Вторая цитата – это хорошо известное высказывание Поттера Стюарта, выдающегося судьи Верховного суда США. Во время обсуждения концепции порнографии и ее отношения к свободе слова при рассмотрении исторического дела 1964 г. он высказал следующее замечание:

Я не стану сейчас пытаться более точно определить, какие материалы, по моему мнению, подпадают под это краткое описание [ «жесткой порнографии»]; может быть даже, я никогда не смогу дать этому более внятное определение. Однако, когда я увижу порнографию, я ее узнаю.

Если подставить вместо слов «жесткая порнография» слово «сложность», получится именно то, что могут сказать многие из нас: возможно, мы не можем определить ее, но мы узнаем ее, когда увидим.

К сожалению, однако, если «узнавать, когда увидишь» и достаточно для Верховного суда США, то науке этого мало. Наука тем и славится, что ее развитие основывается на четкости и достоверности описания предметов, которые она изучает, и концепций, которые она использует. Как правило, мы требуем, чтобы они были точными, недвусмысленными и потенциально измеримыми. В качестве классических примеров величин, точно определенных в физике, но используемых в обиходном или метафорическом смысле в повседневном языке, можно вспомнить об импульсе, энергии и температуре. При этом, однако, существует немалое число действительно важных концепций, точное определение которых все еще вызывает нешуточные споры. В их число входят понятия жизни, инноваций, сознания, любви, устойчивости, города и, между прочим, сложности. Поэтому я не буду пытаться дать научное определение сложности, а изберу промежуточный путь и опишу то, что я считаю существенными элементами типичных сложных систем, по которым

мы сможем узнать их, когда увидим, и отличить их от систем, которые можно назвать простыми или «просто» очень усложненными, но не обязательно сложными. Это обсуждение ни в коем случае не следует считать полным, но оно должно помочь в понимании наиболее заметных черт того, что мы подразумеваем под названием сложных систем [16] .

16

Освещению создаваемой сейчас теории сложности посвящено довольно много популярных книг, в том числе: M. Mitchell. Complexity: A Guided Tour. N. Y.: Oxford University Press, 2008; M. M. Waldrop. Complexity: The Emerging Science at the Edge of Order and Chaos. N. Y.: Simon & Schuster, 1993; J. Gleick. Chaos: Making a New Science. N. Y.: Viking Penguin, 1987; S. A. Kauffman. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford, UK: Oxford University Press, 1995; J. H. Miller. A Crude Look at the Whole: The Science of Complex Systems in Business, Life, and Society. N. Y.: Basic Books, 2016.

Типичная сложная система состоит из великого множества индивидуальных составляющих, или агентов, которые, будучи собраны вместе, приобретают коллективные характеристики, обычно не проявляющиеся в свойствах самих отдельных компонентов и непредсказуемые на их основе. Например, вы – нечто гораздо большее, чем сумма составляющих вас клеток, а каждая из ваших клеток точно так же есть нечто гораздо большее, чем сумма всех молекул, из которых она состоит. То, что вы считаете собой – ваше сознание, ваша личность, ваш характер, – есть коллективное проявление множественных взаимодействий между нейронами и синапсами вашего мозга. Они, в свою очередь, непрерывно участвуют во взаимодействиях с клетками других частей вашего тела, многие из которых являются составляющими полуавтономных органов, например сердца или печени. Кроме этого, все они в той или иной степени непрерывно взаимодействуют с окружающим миром. Более того, каким бы парадоксальным это ни казалось, ни одна из приблизительно 100 триллионов клеток, составляющих ваше тело, не обладает свойствами, которые вы признали или определили бы в качестве именно вашей сущности; ни одна из них также не осознает и не знает, что является вашей составной частью. Каждая из них, так сказать, обладает своими собственными конкретными характеристиками и следует своим собственным правилам поведения и взаимодействия, в результате чего почти что чудом образует совместно со всеми остальными клетками вашего тела то, чем являетесь вы. И это происходит, несмотря на широчайший диапазон масштабов, как пространственных, так и временных, действующих в вашем теле, от микроскопического молекулярного уровня до макроскопических масштабов вашей повседневной жизни в течение всей ее продолжительности, до сотни лет. Вы – настоящий эталон сложной системы.

Аналогичным образом город – это нечто гораздо большее, чем простая сумма его зданий, дорог и жителей, компания – нечто гораздо большее, чем простая сумма ее сотрудников и продукции, а экосистема – нечто гораздо большее, чем простая сумма населяющих ее растений и животных. Экономические результаты, динамика жизни, творческая атмосфера и культура города или компании возникают из нелинейной природы множественных механизмов обратной связи, воплощенных во взаимодействиях между их жителями или сотрудниками, их инфраструктурой и окружающей средой.

Замечательный пример такой системы дает знакомый всем нам муравейник. Всего за несколько дней муравьи буквально строят свой город с нуля, собирая его по крупинке. Они возводят замечательные здания, в которых есть многоуровневые сети туннелей и камер, вентиляционные системы, продуктовые склады и инкубаторы, причем для поддержки всего этого предусмотрены сложные транспортные сети. Лучшие из наших инженеров, архитекторов и градостроителей признали бы эффективность, прочность и функциональность этих построек достойными самых высоких наград, если бы у них были проектировщики и строители. Однако никаких маленьких, но гениальных (да, собственно говоря, даже и посредственных) муравьев-инженеров, муравьев-архитекторов и муравьев-градостроителей нет и никогда не было. Тут нет никого главного.

Муравейники строятся без предварительного обдумывания и без помощи индивидуального разума или коллективных обсуждений или консультаций. Нет ни чертежей, ни проектов. Есть лишь тысячи муравьев, которые бездумно работают вслепую, перемещая миллионы крупинок земли и песка, из которых и складываются эти впечатляющие постройки. Это достижение – результат того, что каждый отдельный муравей следует всего нескольким простым правилам, передаваемым ему химическими стимулами и другими сигналами, а все вместе они совершают поразительно согласованную коллективную работу. Почти что можно подумать, что муравьи запрограммированы на выполнение микроскопических операций в рамках одного гигантского компьютерного алгоритма.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Оружие победы

Грабин Василий Гаврилович
Документальная литература:
биографии и мемуары
5.00
рейтинг книги
Оружие победы

Конь Рыжий

Москвитина Полина Дмитриевна
2. Сказания о людях тайги
Проза:
историческая проза
8.75
рейтинг книги
Конь Рыжий

Хёвдинг Нормандии. Эмма, королева двух королей

Улофсон Руне Пер
Проза:
историческая проза
5.00
рейтинг книги
Хёвдинг Нормандии. Эмма, королева двух королей

Офицер-разведки

Поселягин Владимир Геннадьевич
2. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Офицер-разведки

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Девочка-яд

Коэн Даша
2. Молодые, горячие, влюбленные
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка-яд

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Картошка есть? А если найду?

Дорничев Дмитрий
1. Моё пространственное убежище
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.50
рейтинг книги
Картошка есть? А если найду?

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2