Чтение онлайн

на главную - закладки

Жанры

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Шрифт:

Как такая удивительная регулярность возникает из статистических процессов и исторических случайностей, свойственных процессу естественного отбора? Повсеместное господство степенного закона масштабирования с показателями, кратными 1/4 , явно указывает на то, что естественный отбор подчинялся другим общим физическим принципам, выходящим за пределы конкретных конструкций. Самоподдерживающиеся структуры высокой сложности – будь то клетки, организмы, экосистемы, города или корпорации – требуют тесного объединения огромных количеств составных частей, на всех уровнях которого необходимо действенное обслуживание. В живых системах эта задача решается путем развития фракталоподобных сетевых систем с иерархическим ветвлением, предположительно оптимизированных механизмами непрерывной «конкурентной» обратной связи, свойственными естественному отбору. Именно общие физические, геометрические и математические свойства этих сетевых систем лежат в основе законов масштабирования, отвечая в том числе и за преобладание показателей, кратных 1/4 . Например, закон Клайбера вытекает из требования минимизации энергии, необходимой для циркуляции крови по системе кровообращения млекопитающих, в том числе и человека, чтобы сделать максимальной долю

энергии, которую можно использовать на воспроизводство. В числе других примеров таких сетей можно назвать дыхательную, мочевыделительную и нервную системы, а также сосудистые системы деревьев и других растений. Об этих идеях мы еще поговорим несколько более подробно, так же как и о концепциях заполнения пространства (необходимости питания всех клеток тела) и фракталах (геометрии этих сетей).

В сетях млекопитающих, рыб, птиц, растений, клеток и целых экосистем, несмотря на различия их конструкций, образовавшихся в результате эволюции, действуют одни и те же основополагающие принципы и свойства. Будучи выражены в математических терминах, они не только приводят к объяснению происхождения универсальных степенных законов масштабирования с показателями, кратными 1/4 , но и позволяют получить численные предсказания относительно фундаментальных характеристик этих систем, в том числе, например, размеров самых мелких и самых крупных млекопитающих (землероек и китов), напора крови и частоты пульса в любом сосуде кровеносной системы любого млекопитающего, высоты самого высокого дерева во всех Соединенных Штатах, длительности сна у слонов и мышей или структуры сосудистой системы опухолей [19] .

19

Эти идеи первоначально были высказаны в работе: G. B. West, J. H. Brown and B. J. Enquist. A General Model for the Origin of Allometric Scaling Laws in Biology // Science. 1997. 276. P. 122–126. Нематематические обзоры общей теории и ее следствий можно найти здесь: G. B. West and J. H. Brown. The Origin of Allometric Scaling Laws in Biology from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization // Journal of Experimental Biology. 2005. 208. P. 1575–1592; G. B. West and J. H. Brown. Life’s Universal Scaling Laws // Physics Today. 2004. 57. P. 36–42. В соответствующих местах следующих глав приводятся ссылки на различные технические статьи, посвященные конкретным уточнениям и ответвлениям этой общей основы.

Они же приводят нас к теории роста. Рост можно рассматривать в качестве особого случая явления масштабирования. Взрослый организм – это, по сути дела, результат нелинейного увеличения ребенка; чтобы убедиться в этом, сравните пропорции своего тела с пропорциями младенца. На любом этапе развития рост осуществляется путем распределения метаболической энергии, передаваемой по сетям клеткам уже существующим, для образования новых клеток, из которых составляются новые ткани. Этот процесс можно проанализировать при помощи теории сетей и вывести универсальную численную теорию кривых роста, применимую к любым организмам, в том числе и опухолям. Кривая роста – это попросту график зависимости размеров организма от его возраста. Если у вас есть дети, вы наверняка знакомы с такими кривыми, так как педиатры все время показывают их родителям, чтобы те могли увидеть, как развитие их детей соотносится с уровнями, ожидаемыми для среднестатистического ребенка соответствующего возраста. Теория роста также объясняет один любопытный парадокс, над которым вы, возможно, уже задумывались, а именно тот факт, что мы в какой-то момент перестаем расти, хотя и не перестаем есть. Оказывается, это явление вытекает из сублинейного масштабирования метаболизма и экономии на масштабе, свойственных такой сетевой конструкции. В одной из следующих глав та же парадигма будет применена к росту городов, компаний и экономических систем для разъяснения фундаментального вопроса о происхождении неограниченного роста и возможности его устойчивости.

Поскольку сети определяют скорость подачи в клетки энергии и других ресурсов, они задают темп всех физиологических процессов. Поскольку клетки крупных организмов вынуждены работать систематически медленнее, чем клетки организмов более мелких, темп жизни систематически снижается с ростом размеров. Так, крупные млекопитающие дольше живут, дольше взрослеют и имеют более медленное сердцебиение и клетки, работающие менее интенсивно, чем у мелких млекопитающих, причем степень всех этих различий одинакова и предсказуема. Мелкие создания живут стремительно, а крупные идут по жизни тяжеловесно, но зато более эффективно: вообразите себе суетливо мечущуюся мышку на фоне величественно выступающего слона.

Приняв на вооружение такой образ мыслей, мы перейдем к вопросу о том, как парадигму сетей и масштабирования, успешно укоренившуюся в сфере биологии, можно было бы с пользой применить к аналогичным вопросам динамики, роста и структуры городов и компаний с тем, чтобы разработать аналогичную механистическую теорию городов и компаний. Она, в свою очередь, будет использована в качестве отправной точки для рассмотрения наиболее важных вопросов глобальной устойчивости и проблем, создаваемых постоянными инновациями и увеличением темпа жизни.

8. Города и глобальная устойчивость: инновации и циклы сингулярностей

Масштабирование как проявление основополагающей сетевой теории предполагает, что в том, что касается измеряемых характеристик и черт, кита, несмотря на все различия внешнего вида и среды обитания, с хорошей точностью можно считать увеличенным слоном, слона – увеличенной собакой, а собаку, в свою очередь, – увеличенной мышью. Все они на 80–90 % являются масштабными версиями друг друга и подчиняются предсказуемым нелинейным математическим

правилам. Иначе говоря, все когда-либо существовавшие млекопитающие, не исключая и нас с вами, в среднем и приближенно представляют собой масштабные версии некоего единого идеального животного. Может ли то же самое относиться к городам и компаниям? Можно ли считать Нью-Йорк увеличенным Сан-Франциско, его – увеличенным Бойсе, а тот – увеличенным Санта-Фе? Является ли Токио увеличенной Осакой, Осака – увеличенным Киото, а Киото – увеличенной Цукубой? Несомненно, все эти города, даже взятые в контексте городских систем [20] одной и той же страны, выглядят по-разному и отличаются друг от друга историей, географией и культурой. Однако то же можно сказать и о китах, лошадях, собаках и мышах. Дать серьезные ответы на такие вопросы можно лишь одним способом – рассмотрев соответствующие данные.

20

Городской системой здесь и далее называется не система, существующая в каком-либо городе, а система городов страны. – Прим. перев.

Анализ таких данных замечательным образом показывает, что инфраструктура города – например, протяженность дорог, электрических проводов, водопроводных труб, а также число бензоколонок – одинаково масштабируется в зависимости от численности его населения, будь то в Соединенных Штатах, Китае, Японии, Европе или Латинской Америке. Как и в биологии, масштабирование этих величин в зависимости от размера сублинейно, что указывает на наличие систематической экономии на масштабе, но степенной показатель составляет не 0,75, а около 0,85. Таким образом, чем больше город, тем меньше требуется дорог и электрических проводов на душу его населения, где бы в мире он ни находился. Оказывается, города, как и организмы, действительно являются масштабными версиями друг друга, несмотря на все различия их истории, географического положения и культуры, – по крайней мере в том, что касается их физической инфраструктуры.

Возможно, еще более замечательно то, что они также являются масштабными версиями друг друга с точки зрения социально-экономической. Социально-экономические параметры – например, размеры зарплат и капиталов, уровень здоровья населения, число патентов, заболеваемость СПИДом, число преступлений и образовательных учреждений, – которые не имеют аналогов в биологии и вообще не существовали на Земле до того, как десять тысяч лет назад люди изобрели города, тоже масштабируются относительно численности населения, но с суперлинейным (то есть большим единицы) показателем, составляющим около 1,15. Пример такого масштабирования можно найти в графике числа патентов, создаваемых в городах, приведенном на рис. 3. Таким образом, в пересчете на душу населения все эти величины систематически возрастают в той же степени, что и размеры города, при одновременном и эквивалентном уменьшении величины всех инфраструктурных параметров в соответствии с их экономией на масштабе. Несмотря на поразительные разнообразие и сложность городов всего мира, несмотря на все различия местных программ городского планирования, параметры городов проявляют на удивление незамысловатую простоту, регулярность и предсказуемость [21] .

21

Эти результаты более подробно изложены в фундаментальной статье: L. M. A. Bettencourt et al. Growth, Innovation, Scaling, and the Pace of Life in Cities // Proceedings of the National Academy of Science USA. 2007. 104. P. 7301–7306. Ссылки на последующие работы, касающиеся конкретных более узких тем, приводятся в соответствующих местах следующих глав. Краткие обзоры этого вопроса можно найти: L. M. A. Bettencourt and G. B. West. A Unified Theory of Urban Living // Nature. 2010. 467. P. 912, 913; Bigger Cities Do More with Less // Scientific American. 2011. Sept. 52, 53.

Попросту говоря, масштабирование означает, что в городе, в два раза большем другого города той же страны (будь то города с населением 40 тысяч и 20 тысяч или 4 и 2 млн человек), размеры зарплат и капитала, число патентов, заболеваний СПИДом, преступлений с применением насилия и образовательных учреждений увеличивается почти в той же степени (приблизительно на 15 % больше точного удвоения), а удельный объем инфраструктуры уменьшается на такую же величину. Чем больше город, тем большим обладает отдельный его житель, тем больше он систематически производит и потребляет, идет ли речь о благах, ресурсах или идеях. И хорошие, и плохие, и злые оказываются объединены в приблизительно предсказуемые комплекты: человек может переехать в большой город, будучи привлечен большим количеством инноваций, большим ощущением «активности» и более высокой зарплатой, но при этом он может ожидать и аналогичного увеличения уровня преступности и заболеваемости.

Тот факт, что для различных городских параметров городов и агломераций, развивавшихся независимо в разных частях света, наблюдаются одни и те же законы масштабирования, является сильным аргументом в пользу существования неких основополагающих принципов, подобных тем, что существуют в биологии, и не зависящих от исторических, географических и культурных особенностей, а также в пользу возможности создания фундаментальной, приблизительной теории городов. В главе 8 я буду говорить о том, что неразрешимые противоречия между преимуществами и стоимостью социальных и инфраструктурных сетей происходят из лежащей в основе последних универсальной динамики сетевых социальных структур и групповой кластеризации взаимодействий между людьми. Города образуют естественный механизм получения преимуществ от высокой социальной связности между разными людьми, осознающими и решающими проблемы разнообразными способами. Я буду говорить о природе и динамике таких сетевых социальных структур и покажу, как возникают законы масштабирования, в том числе и любопытная связь между 15 %-м ростом всех, как положительных, так и отрицательных, видов социально-экономической активности и эквивалентной ему 15 %-й экономией физической инфраструктуры.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Оружие победы

Грабин Василий Гаврилович
Документальная литература:
биографии и мемуары
5.00
рейтинг книги
Оружие победы

Конь Рыжий

Москвитина Полина Дмитриевна
2. Сказания о людях тайги
Проза:
историческая проза
8.75
рейтинг книги
Конь Рыжий

Хёвдинг Нормандии. Эмма, королева двух королей

Улофсон Руне Пер
Проза:
историческая проза
5.00
рейтинг книги
Хёвдинг Нормандии. Эмма, королева двух королей

Офицер-разведки

Поселягин Владимир Геннадьевич
2. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Офицер-разведки

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Девочка-яд

Коэн Даша
2. Молодые, горячие, влюбленные
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка-яд

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Картошка есть? А если найду?

Дорничев Дмитрий
1. Моё пространственное убежище
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.50
рейтинг книги
Картошка есть? А если найду?

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2