Чтение онлайн

на главную - закладки

Жанры

Математический аппарат инженера
Шрифт:

Аналогичные определения можно дать для некоторых совокупностей состояний, рассматриваемых как подавтоматы. Если начальное состояние автомата М принадлежит непустому множеству Si состояний, которое составляет тупиковый или изолированный подавтомат, то M можно упростить исключением всех состояний, которые не принадлежат множеству Si, и всех дуг, начинающихся в этих состояниях.

Пусть М1, М2 и M3 соответственно преходящий, тупиковый и изолированные подавтоматы автомата М, которые характеризуются множествами

состояний S1, S2 и S3. Очевидно, выделение таких подавтоматов соответствует разбиению множества S состояний автомата М на непересекающиеся подмножества S1, S2 и S3, представляющие собой классы эквивалентности ( S1 S2 S3 = S и S1 S2 S3 = ). Как следует из обобщенного графа (рис. 237), матрица соединения автомата может быть представлена в виде:

,

– 570 -

где 11, 22, 33– матрицы подавтоматов М1, М2 и М3; 12– матрица, характеризующая переходы от состояний преходящего автомата М1 к состояниям тупикового автомата М2. Отсюда следует, что разбиение автомата М на подавтоматы М1, М2 и М3 можно осуществить преобразованием его матрицы соединений к стандартному виду путем перестановки соответствующих строк и столбцов. Например, для автомата, граф которого изображен на рис. 238, имеем:

Рис. 237. Обобщенный граф конечного автомата.

Рис. 238. Граф конечного автомата к примеру разбиения на подавтоматы.

Отсюда следует, что S1 = {3, 6} составляет преходящий подавтомат, S2 = {2, 4, 7} - тупиковый подавтомат и S3 = {1, 5} - изолированный подавтомат. Если начальное состояние принадлежит множеству S2, то можно упростить автомат, исключив состояния S1 S3 = {3, 6, 1, 5}, а в случае принадлежности начального состояния множеству S3 автомат упрощается исключением состояний S1 S2 = {3, 6, 2, 4, 7}.

6. Синтез конечных автоматов. Реализация конечных автоматов сводится к синтезу соответствующей комбинационной схемы, преобразующей входные переменные x и s в выходные переменные y и s( + 1) в соответствии с заданными характеристическими функциями s( + 1) = (x, s) и y= (x, s). Для сохранения состояний s( + 1) до следующего такта в цепь обратной связи вводится необходимое количество элементов памяти.

При реализации автоматов в двоичном структурном алфавите можно использовать рассмотренные ранее методы синтеза

– 571 -

комбинационных схем. Но для этого необходимо закодировать состояния схемы н представить характеристические функции в виде булевых функций двоичных переменных. Такое кодирование можно осуществить преобразованием общей таблицы перехода автомата к таблице соответствия в двоичном структурном алфавите.

Если элементы множеств X, Y и S пронумерованы порядковыми числами, начиная с нуля, то им соответствуют коды, представляющие собой двоичные эквиваленты этих чисел. Например, для автомата, заданного в (4), таблицу переходов можно преобразовать к виду:

Заменяя десятичные числа их двоичными эквивалентами, читаемыми сверху вниз, получаем таблицу соответствия, в которой значения функций s( + 1) и у представлены двоичными кодами:

Рис. 239. Структурная схема конечного автомата

Отсюда видно, что комбинационная схема должна иметь четыре входа, соответствующие входным переменным x1, х2 и переменным состояния s, s2, а также три выхода, соответствующие переменным состояния s1( + 1), s2( + 1) и выходной переменной у1. Синтезировав комбинационную схему, соответствующую полученной таблице и введя два элемента задержки З1 и З2, получим структурную схему автомата (рис. 239).

7. Минимизация автоматов. С утилитарной точки зрения интерес представляет только зависимость между входами и выходами автомата, а роль его состоянии сводится исключительно к участию в формировании этих зависимостей в качестве промежуточных переменных. Следовательно, любая совокупность состояний, обеспечивающая требуемые зависимости между входом и выходом, может быть выбрана в качестве множества состоянии автомата. В то же

– 572 -

время этот выбор естественно подчинить определенным целям, например, минимизации числа состояний или оптимизации автомата в каком-либо смысле. Следует иметь в виду, что с уменьшением числа состоянии уменьшается и количество требуемых элементов памяти, но это может привести к усложнению комбинационной схемы автомата. Поэтому синтез наиболее экономичного автомата часто требует поиска удачного компромисса между сложностью его комбинационной и запоминающих частей.

Рис. 240. Граф конечного автомата (а) и его сокращенная форма (б)

Минимизация числа состоянии полных автоматов связана с отношением эквивалентности. Пусть автоматы М1 и М2, находящиеся соответственно в начальных состояниях, i и j (обозначения М1 и М2 могут относиться к одному и тому же автомату), под воздействием любой входной последовательности выдают одинаковые выходные последовательности, т. е. автоматы М1 и М2 в данных состояниях i и j неразличимы по внешним выходам. Такое отношение между состояниями одного и того же или двух различных автоматов обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, оно является отношением эквивалентности состояний. Если состояния не эквивалентны, то их называют различимыми. Легко доказать справедливость следующих положений:

1) состояния i и j автомата явно различимы, если различаются соответствующие, им строки в таблице выходов;

2) состояния i и j автомата явно эквививалентны, если соответствующие им строки в таблице переходов и таблице выходов одинаковы или становятся одинаковыми при замене каждого номера i на номер j (или наоборот).

Например, для автомата, граф которого изображен на рис. 240, а, общая таблица переходов имеет вид:

Поделиться:
Популярные книги

Законы Рода. Том 8

Flow Ascold
8. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 8

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Кодекс Крови. Книга ХIII

Борзых М.
13. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIII

Законы Рода. Том 9

Flow Ascold
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Лэрн. На улицах

Кронос Александр
1. Лэрн
Фантастика:
фэнтези
5.40
рейтинг книги
Лэрн. На улицах

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая