Чтение онлайн

на главную - закладки

Жанры

Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:

Окончательное выражение для безразмерной продольной координаты сопряжения конической и сферической частей выброса может быть получено при подстановке в соотношение (3.24) вместо р и q их значений. Из-за громоздкости мы его не приводим.

Если известен радиус полусферической «шапки» выброса R, то выражение для продольной координаты сопряжения может быть записано в виде компактного соотношения. Приравниваем объем цилиндрической части выброса

и его сферической части

Получаем:

Из

рассмотрения Рис. 3.4 видно, что по мере развития выброса координата его центра масс перемещается с полусферической его части на цилиндрическую часть. В математическом виде это утверждение может быть записано так:

В этих соотношения, как и ранее:

ух=кх — уравнение цилиндрической образующей конуса;

 — уравнение образующей сферической части поверхности выброса.

После вычисления интегралов имеем следующие соотношения для определения координаты х*:

При х* >= хс:

v1 + v2 = v3 (3.25)

где

Уравнение (3.25) при учете вида соотношений (3.26), (3.27), (3.28) записывается в виде кубического уравнения

В каноническом виде относительно переменной

Это уравнение при учете связи характеристик выброса R и L может быть решено аналитически или численно.

Уравнение (3.29) при учете соотношений (3.30), (3.31), (3.32) записывается так:

Откуда

или при учете соотношения

получаем для х* окончательное выражение (случай х*с):

Поперечный размер выброса в месте нахождения его центра масс R„может быть определен при использовании геометрических построений Рис. 3.4.

Здесь, как и ранее, радиус полусферической «шапки» выброса определяется соотношением:

При

большом времени истечения вещества из сопла кратковременный выброс перестраивается в струйный. Для струйного выброса значением начального радиуса R0 можно пренебречь по сравнением с его приращением, т. е.

При этом

и из соотношения (3.29) при учете (3.30), (3.31) и (3.32) получаем асимптотические зависимости для координат центра масс выброса

График зависимости безразмерной координаты центра масс струйного выброса 

от коэффициента углового расширения его конической части к представлен на рисунке 3.5.

Как следует из графика этого рисунка увеличение угловой координаты его центра масс приводит к линейному уменьшению 

. Однако, эта зависимость сравнительно слабая. В диапазоне возможных состояний атмосферы, характеризующихся диапазоном коэффициентов углового расширения 0,087 <= к <= 0,364 (классы устойчивости атмосферы от В до Е по классификации Пасквилла) безразмерное значение продольной координаты изменяется от

Рис. 3.5. Зависимость безразмерной продольной координаты струйного выброса продуктов горения из сопла от углового коэффициента расширения струи к.

Найдем теперь выражение для поверхностей вовлечения формирующихся кратковременных выбросов. Считаем, что выходящий из сопла газ механически выдавливает окружающий воздух вплоть до полусферического объема (это состояние вещества выброса соответствует временной координате t3 на Рис. 3.4а). Вовлечение в выброс начинает происходить при t > t3 через образующуюся коническую его поверхность.

Площадь вовлечения окружающей среды при этом запишется так:

SB = (R + R0) x L.обр

где

 длина образующей конической поверхности,

 — угол конической поверхности выброса.

Учитывая связь угла а и коэффициента углового расширения потока к:

к = tg

находим для образующей следующее Lобр выражение:

Подставляя в выражение для площади вовлечения вместо Lобр его выражение, получаем:

При учете формулы для радиуса R получаем окончательное выражение для поверхности вовлечения кратковременного выброса. Оно имеет вид:

На графике Рис. 3.6 представлена зависимость безразмерной (отнесенной к площади соплового сечения) поверхность вовлечения кратковременного выброса от безразмерной длины выброса для различных значений углового расширения к:

Поделиться:
Популярные книги

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3

Жена на пробу, или Хозяйка проклятого замка

Васина Илана
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Жена на пробу, или Хозяйка проклятого замка

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Неучтенный. Дилогия

Муравьёв Константин Николаевич
Неучтенный
Фантастика:
боевая фантастика
попаданцы
7.98
рейтинг книги
Неучтенный. Дилогия

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар