Чтение онлайн

на главную - закладки

Жанры

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

Несколько слов о торговле акциями

Методы, описанные в этой книге, могут использоваться не только фьючерсными трейдерами, но и трейдерами, работающими на любом рынке. Даже тем, кто тор­гует голубыми фишками, принципы, рассмотренные в этой книге, будут весьма полезны. Мы знаем, что для портфеля голубых фишек существует оптимальный рычаг, когда отношение потенциальных выигрышей к потенциальным проигры­шам максимально, правда, при этом падения баланса могут быть довольно значи­тельными, поэтому портфель необходимо разбавлять, используя стратегию дина­мического дробного f. Для того чтобы использовать методы, описанные в этой книге, в торговле ак­циями,

мы будем считать, что акция является фьючерсной рыночной системой. Предположим, текущая цена Toxico равна 40 долларам. Следовательно, сто­имость 100 акций Toxico составляет 4000 долларов. Лот из 100 акций можно счи­тать 1 контрактом рыночной системы Toxico. Таким образом, если работать с на­личным счетом, то в уравнении (8.08) следует заменить переменную залогi $ на цену 100 акций Toxico (в нашем случае 4000 долларов). Далее, мы можем опреде­лить верхнюю границу доли f. Помните, что мы моделируем ситуацию с рыча­гом, но на самом деле не занимаем и не ссужаем денежные средства, поэтому в любых формулах, где есть RFR (например, отношение Шарпа), следует исполь­зовать RFR = 0. Если в случае с Toxico используется маржевой счет и первоначальный залог составляет 50%, то в уравнении (8.08) залог$ = $2000. Традиционно управляющие фондами акций использовали портфели, в кото­рых сумма весов ограничена единицей. Состав портфеля выбирался таким обра­зом, чтобы при данном уровне арифметической прибыли дисперсия была мини­мальной. Получившийся в результате портфель задавался весами или долями тор­гового счета для каждого компонента портфеля.

Сняв ограничение по сумме весов и выбрав геометрически оптимальный пор­тфель, мы получим оптимальный портфель с рычагом. Здесь веса и количества от­личаются. Разделим оптимальное количество для финансирования одной едини­цы каждого компонента на его соответствующий вес и получим оптимальный рычаг для каждого компонента портфеля. Теперь разбавим портфель, включив в него безрисковый актив. Можно разбавить портфель до точки, где рычаг как бы исчезает, т.е. рычаг применяется к активной части портфеля, но активный баланс портфеля в действительности использует беспроцентные деньги из неактивной части баланса. Таким образом мы получим портфель, в котором регулируются по­зиции при изменении баланса счета, что позволяет получить наибольший геомет­рический рост. Предложенный метод максимизирует отношение потенциального геометрического роста к потенциальному проигрышу и допускает заранее извест­ный максимальный проигрыш. Для управления портфелем ценных бумаг опи­санный метод является наилучшим. Наиболее распространенный в настоящее время метод выведения эффектив­ной границы в действительности не позволяет получить эффективную границу и, тем более, геометрический оптимальный портфель (геометрический оптималь­ный портфель всегда находится на эффективной границе), который можно найти только с помощью оптимального f. Кроме того, традиционный метод позволяет получить портфель на основе статического f, а не динамического f, которое в асимптотическом смысле предпочтительнее.

Заключительный комментарий

В настоящее время исследования, подобные изложенным в этой книге, представ­ляют большой интерес. С середины 1950-х годов постоянно появляются новые концепции. Много замечательных идей, основанных на модели Е — V, пришло к нам из академического сообщества. Среди предложенных концепций есть, на­пример, модель Е — S, где риск измеряется не дисперсией, а полудисперсией. Полудисперсия — это дисперсия некоторого уровня прибыли, который может

быть ожидаемой прибылью, нулевой прибылью или любым другим фиксирован­ным уровнем прибыли. Когда заданный уровень прибьши равен ожидаемой при­были и распределение прибылей симметрично (без асимметрии), эффективная граница Е — S совпадает с эффективной границей Е — V.

Существуют модели портфелей, использующие вместо дисперсии прибылей другие способы выражения риска, а

также более высокие моменты распределе­ния прибылей. Большой интерес в этом отношении представляют методы сто­хастического доминирования, которые учитывают все распределения прибылей и могут считаться предельным случаем многомерного анализа портфеля, когда число используемых моментов стремится к бесконечности. Подобный подход может быть особенно полезен в том случае, когда дисперсия прибылей беско­нечна или не определена.

И снова повторюсь — я не академик — это ни хвастовство, ни извинение, я та­кой же академик, как чревовещатель или телевизионный проповедник. Академи­кам необходима модель для объяснения того, как работают рынки, мне же не так важно, как они работают. Многие представители академического сообщества ут­верждают, что гипотеза об эффективной границе неверна, так как не существует по­нятия «рациональный инвестор». Сторонники такого подхода утверждают, что люди не ведут себя рационально, поэтому традиционные модели портфелей, такие как теория Е — V (и ее варианты) и модель оценки доходности финансовых акти­вов, являются неудовлетворительными моделями работы рынков. Я согласен, что инвесторы не всегда ведут себя рационально, но это не означает, что нам следует ве­сти себя подобным образом. Нельзя утверждать, что мы не можем получить выгоду из рационального поведения. Когда дисперсия прибылей конечна, мы можем по­лучить преимущество, находясь на эффективной границе.

В последнее время традиционные модели портфелей подвергаются серьезной критике, поскольку считается, что ценовые изменения лучше всего описываются распределением Парето с бесконечной (или неопределенной) дисперсией. Одна­ко многие исследования доказывают, что рынки в последние годы стали ближе к нормальному распределению (т.е. к ограниченной дисперсии и независимости результатов), на чем и основаны критикуемые модели портфелей. В моделях портфелей используется распределение прибылей, а не распределение изменений цен. Несмотря на то что распределение прибылей является трансформиро­ванным распределением изменений цены (в результате закрытия проигрышных сделок и максимально долгого удержания выигрышных позиций), эти распреде­ления, как правило, отличаются. Распределение прибылей не обязательно отно­сится к классу распределений Парето, поэтому в главе 4 мы моделировали распре­деление P&L с помощью регулируемого распределения. Более того, существуют производные инструменты, например, опционы, которые имеют ограниченную полудисперсию или дисперсию. Например вертикальный опционный спред в де­бете гарантирует ограниченную дисперсию прибылей. Я не пытаюсь оспаривать разумную критику современных моделей портфе­лей. Модели следует использовать при условии, что мы осознаем их недостатки. Разумеется, необходимы более совершенные модели портфелей. Я не заявляю, что современные модели адекватны, а говорю лишь о том, что входные данные для моделей портфелей, нынешних или будущих, должны основываться на тор­говле одной единицей на оптимальном уровне — или на том уровне, который, как мы полагаем, будет оптимальным. Например, если мы применяем теорию Е — V (модель Марковица), входными данными являются ожидаемая прибыль, диспер­сия прибылей и корреляции прибылей между рыночными системами. Входные данные должны определяться на основе торговли одной единицей по каждой ры­ночной системе на уровне оптимального f. Модели портфелей, отличные от Е — V, могут потребовать других входных параметров, но и их для каждой рыночной системы все равно следует рассчитывать на основе торговли одной единицей на уровне оптимального f. Модели портфелей являются лишь одной составляющей управления капита­лом, и эта книга не может ответить на все вопросы. Кроме того, постоянно появ­ляются новые, усовершенствованные модели. Скорее всего, мы никогда не полу­чим абсолютно совершенной модели, но это только будет стимулировать даль­нейшие поиски.

Поделиться:
Популярные книги

Метатель. Книга 3

Тарасов Ник
3. Метатель
Фантастика:
попаданцы
альтернативная история
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 3

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Поющие в терновнике

Маккалоу Колин
Любовные романы:
современные любовные романы
9.56
рейтинг книги
Поющие в терновнике

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

Я сделаю это сама

Кальк Салма
1. Магический XVIII век
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Я сделаю это сама

Цикл "Отмороженный". Компиляция. Книги 1-14

Гарцевич Евгений Александрович
Отмороженный
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Цикл Отмороженный. Компиляция. Книги 1-14

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Экономка тайного советника

Семина Дия
Фантастика:
фэнтези
5.00
рейтинг книги
Экономка тайного советника

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Вор (Журналист-2)

Константинов Андрей Дмитриевич
4. Бандитский Петербург
Детективы:
боевики
8.06
рейтинг книги
Вор (Журналист-2)

Господин следователь 6

Шалашов Евгений Васильевич
6. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь 6

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!