Математика. Утрата определенности.
Шрифт:
На фоне непрекращающихся попыток подвести прочный фундамент под здание математики доказательство непротиворечивости перерастало в острейшую проблему. Но в начале XX в. математики поняли, что с точки зрения обоснования уже полученных результатов существуют и другие проблемы, не уступающие по своей значимости проблемам непротиворечивости. Критический дух математиков окреп и закалился в конце XIX в., и, вступив в двадцатое столетие, они подвергли безжалостному пересмотру все, что легко принимали на веру их предшественники. Им удалось обнаружить совершенно невинное на первый взгляд утверждение, которое ранее кочевало из доказательства в доказательство, не привлекая внимания. Утверждение это состояло в следующем: если имеется любой набор(конечный или бесконечный) множеств, то всегда можно, выбрав из каждого множества по одному элементу, составить из этих элементов новое множество.Так, от каждого штата из пятидесяти штатов США можно выбрать по одному жителю и составить из них группу из 50 человек.
То, что это утверждение в действительности составляет специальную аксиому — так называемую аксиому выбора, математики осознали из работы Эрнста Цермело (1871-1953), опубликованной в 1904 г. В этой связи весьма уместно обратиться к истории вопроса [56]. Когда Кантор задумал расположить трансфинитные числа по величине, ему понадобилась теорема о том, что любое множество вещественных чисел может быть вполне
Как уже неоднократно случалось в прошлом, математики использовали аксиому выбора бессознательно и лишь гораздо позднее не только поняли, что применяют эту аксиому, но и докопались до причин, побудивших их ее принять. Кантор неявно использовал аксиому выбора в 1887 г. для доказательства теоремы о том, что любое бесконечное множество содержит подмножество с кардинальным числом N 0 .Кроме того, аксиома выбора неявно использовалась при доказательствах многих теорем топологии, теории меры, алгебры и функционального анализа. Например, аксиома выбора находит применение при доказательстве теоремы о том, что в любом ограниченном множестве чисел всегда можно выбрать последовательность, сходящуюся к предельной точке множества. Аксиома выбора используется также для доказательства фундаментальных утверждений, например при построении вещественных чисел из аксиом Пеано для целых чисел. Аксиома выбора применяется и при доказательстве теоремы о конечности множества всех подмножеств конечного множества. В 1923 г. Гильберт назвал аксиому выбора общим принципом, который необходим и неоценим как один из первых элементов теории математического вывода. Пеано первым обратил внимание на аксиому выбора. Еще в 1890 г. он писал, что нельзя бесконечно применять произвольное правило, позволяющее отбирать по одному элементу из каждого множества, сколько бы их ни было. Пеано сформулировал правило выбора для частного случая, т.е. для той задачи (интегрируемости дифференциальных уравнений), рассмотрением которой он занимался, и тем самым устранил возникшую трудность. То, что аксиома выбора действительно является аксиомой, понял в 1902 г. Беппо Леви, а Цермело узнал об этом от Эрхардта Шмидта в 1904 г.
Явное использование Цермело аксиомы выбора вызвало бурю протестов в следующем же номере (за 1904 г.) авторитетного журнала Mathematische Annalen.С критикой аксиомы выбора выступили Эмиль Борель (1871-1956) и Феликс Бернштейн (1878-1956). Вслед за их критическими выступлениями последовал обмен письмами между ведущими математиками того времени Эмилем Борелем, Рене Бэром (1874-1932), Анри Лебегом (1875-1941) и Жаком Адамаром (1865-1963); эти письма были опубликованы на страницах журнала Bulletin de la Soci'et'e Math'ematique de Franceза 1905 г.
Суть критики сводилась к тому, что если не указано правило, по которому из каждого множества выбирается по элементу, то реально выбор не производится и поэтому в действительности новое множество не образуется. В ходе доказательства выбор может изменяться, поэтому доказательство утрачивает силу. По выражению Бореля, выбор без правил представляет собой акт веры; поэтому аксиома выбора лежит за пределами математики. Поясним сказанное на примере, предложенном в 1905 г. Бертраном Расселом. Предположим, что у меня есть сто пар обуви и я из каждой пары выбираю левый ботинок. Правило, которым я руководствуюсь при выборе в этом случае, ни у кого не вызовет сомнений. Но предположим, что у меня имеется сто пар носков и из каждой пары я выбираю по одному носку. В этом случае невозможно указать, какой носок (правый или левый) был выбран из каждой пары, т.е. нельзя сформулировать правило, по которому был произведен выбор. Те, кто отстаивал аксиому выбора, признавали, что правила выбора может и не быть, но не считали его необходимым. По их мнению, акты выбора определены просто тем, что их считают определенными.
Против аксиомы выбора выдвигались и другие возражения. Так, Пуанкаре принимал аксиому выбора, но отвергал предложенное Цермело доказательство полной упорядоченности, поскольку в этом доказательстве используются непредикативные утверждения. Бэр и Борель возражали не только против аксиомы, но и против доказательства, так как из него не видно, как осуществляется полное упорядочение, — доказывается лишь, что оно осуществимо. Брауэр, со взглядами которого на основания математики мы познакомимся в дальнейшем (гл. X), возражал потому, что считал неприемлемыми актуально бесконечные множества. Возражение Рассела сводилось к тому, что множество естественно определять свойством, которым обладают все элементы этого множества, и только они. Так, например, множество людей, носящих зеленую шляпу, можно было бы определить свойством «носящие зеленую шляпу». Но аксиома выбора не требует, чтобы выбранные элементы обладали каким-нибудь определенным свойством. Она лишь утверждает, что каждый элемент выбран из одного из заданных множеств — по одному элементу на каждое множество. Сам Цермело довольствовался интуитивным понятием множества, и поэтому у него не вызывало сомнений, что при любом выборе из каждого множества по одному элементу образуется новое множество.
Единственным стойким защитником Цермело был Адамар. Он утверждал, что аксиома выбора приемлема по тем же причинам, какие он приводил, отстаивая теорию множеств Кантора. По мнению Адамара, для того чтобы утверждать существование объектов, отнюдь не требуется их описывать. Если одного утверждения о том, что объект существует, достаточно для прогресса математики, то это утверждение приемлемо.
В ответ на критические замечания Цермело дал второе доказательство полного упорядочения, также основанное на использовании аксиомы выбора (в
Было предложено много эквивалентных вариантов аксиомы выбора. Если аксиому выбора принять наряду с другими аксиомами теории множеств, то эти варианты представляют собой теоремы. Но все попытки заменить аксиому выбора менее спорной аксиомой оказались безуспешными. Маловероятно, что удастся найти удачную замену аксиомы выбора, приемлемую для всех математиков.
Споры вокруг аксиомы выбора по существу сводились к одной главной проблеме: как следует понимать существованиев математике? Одни математики склонны считать «существующим» любое понятие, оказавшееся полезным, если оно не приводит к противоречиям, например обычную замкнутую поверхность, площадь которой бесконечна. Для других математиков «существование» означает четко распознаваемое определение или такое понятие, которое позволяет отождествить или по крайней мере описать его. Одной лишь возможности выбора недостаточно. В дальнейшем эти взаимоисключающие точки зрения стали еще более непримиримыми — мы поговорим о них в следующих главах. Пока же заметим только, что аксиома выбора стала яблоком раздора между математиками.
И тем не менее десятилетия спустя, когда математика значительно расширила свои границы, многие ученые продолжали использовать аксиому выбора. Не утихали и споры по поводу того, можно ли считать аксиому выбора и доказываемые с ее помощью теоремы законной, вполне приемлемой математикой. {104} Аксиома выбора стала предметом активного обсуждения и уступала в этом отношении лишь аксиоме Евклида о параллельных. По замечанию Лебега, оппонентам не оставалось ничего другого, как поносить друг друга, ибо прийти к соглашению они не могли. Сам Лебег, несмотря на отрицательное и скептическое отношение к аксиоме выбора, все же пользовался ею, по его собственному выражению, «дерзко и осторожно», полагая, что будущее покажет, кто прав.
104
Сомнения по этому поводу подогревались рядом полностью противоречащих нашей интуиции (или очень сильных и «слишком просто» доказываемых) результатов, получаемых с использованием аксиомы выбора Цермело. Наиболее известна здесь, пожалуй, эффектная работа Ф. Хаусдорфа, результат которой, несколько огрубляя, можно описать так: пусть Ш — обыкновенный шар трехмерного евклидова пространства; Хаусдорф разбивает этот шар на четыре множества I, II, III и IV так, что сложив по-другому множества I и II, мы получим из них шар Ш 1, равный Ш; из множеств III и IV также можно сложить равный Ш шар Ш 2. (Ср. гл. XII).
Но в первые же годы XX в. математиков стала беспокоить еще одна проблема. Сначала она не представлялась достаточно фундаментальной, но по мере распространения канторовской теории трансфинитных кардинальных и ординальных чисел становилась все более острой и настоятельно требовала своего решения.
В своих последних работах Кантор построил теорию трансфинитных кардинальных чисел на основе теории ординальных чисел. Например, кардинальное число множества всех возможных конечных множеств (точнее, множество всех конечных ординальных чисел) равно N 0. Кардинальное число всех возможных множеств ординальных чисел, содержащих лишь считанное число ( N 0) элементов, равно N 1 .Продолжая эту последовательность, Кантор получал все большие кардинальные числа, которые обозначил N 0, N 1, N 2, …. Кроме того, каждое очередное кардинальное число непосредственно следовало за предыдущим (было ближайшим к предыдущему кардинальным числом). Но в самом начале своих работ по трансфинитным числам Кантор показал, что множество всех вещественных чисел насчитывает 2 N0членов (эту величину принято кратко обозначать c) и что 2 N0больше, чем N 0. Вопрос, который тогда же поставил Кантор, заключался в следующем: с каким членом последовательности алефов совпадает c? Так как кардинальное число N 1следует непосредственно за N 0, кардинальное число cбольше или равно N 1. Кантор высказал предположение, что c = N 1. Это предположение, впервые сформулированное в 1884 г. и опубликованное в том же году, получило название гипотезы континуума. {105} Эта гипотеза допускает также другую, несколько более простую формулировку: не существует трансфинитного числа, заключенного между N 0и c(кардинальное число любого бесконечного подмножества множества вещественных чисел либо равно N 0, либо равно с). {106} В первые десятилетия XX в. вокруг гипотезы континуума развернулась бурная дискуссия, но проблема так и не была решена. Помимо того что гипотеза континуума дала возможность доказать новые теоремы, она приобрела особое значение, так как позволила глубже понять бесконечные множества, взаимно-однозначное соответствие и аксиому выбора и тем самым способствовала лучшему обоснованию теории множеств.
105
Можно взять множество с кардинальным числом N 1и рассмотреть множество всех его подмножеств, кардинальное число которого обозначается через 2 N1. Как доказал Кантор, 2 N1 > N 1. Можно предположить, что 2 N1= N 2и что 2 N n = N n+1 . Такое предположение называется обобщенной гипотезой континуума.
106
Вариант гипотезы континуума, приведенный в скобках, не требует обращения к аксиоме выбора.