Чтение онлайн

на главную - закладки

Жанры

Математика. Утрата определенности.
Шрифт:

Лейбниц не осуществил программу вывода математики из логики, как не осуществили ее в течение последующих почти двухсот лет все те, кто высказывал аналогичные убеждения. Так, Рихард Дедекинд голословно утверждал, что число невыводимо из интуитивных представлений о пространстве и времени, а является «непосредственной эманацией законов чистого разума». По мнению Дедекинда, из числа мы выводим точные понятия пространства и времени. Дедекинд начал развивать свой тезис, но не особенно преуспел в этом [47].

Наконец, за осуществление основного тезиса логицизма принялся находившийся под влиянием идей Дедекинда Готлоб Фреге, который внес немалый вклад в развитие математической логики (гл. VIII). Фреге относил математические законы к числу так называемых аналитических суждений.Такие суждения утверждают не более того, что неявно заложено в принципах логики, являющихся априорными истинами. Математические теоремы и их доказательства позволяют нам выявить это неявное. Не вся математика применима к реальному миру, но вся математика заведомо состоит из необходимых истин. Построив в своей работе «Исчисление понятий» (1879) логику на основе явно сформулированных аксиом, Фреге в «Основаниях арифметики» (1884) и в двухтомном сочинении «Основные законы арифметики» (1893-1903) приступил к выводу из логических посылок арифметических понятий, определений

и правил. В свою очередь из законов арифметики можно вывести алгебру, математический анализ и даже геометрию, так как аналитическая геометрия позволяет выразить геометрические понятия и свойства геометрических фигур на языке алгебры. К сожалению, символика Фреге была чрезвычайно сложной и непривычной для математиков, в силу чего работы Фреге оказали слабое влияние на современников. Известна история о том, что как раз в то время, когда Фреге завершил работу над вторым томом «Основных законов арифметики» (1902), он получил (такова ирония судьбы!) письмо от Бертрана Рассела. В этом письме Рассел писал, что, к сожалению, Фреге использовал в своем труде понятие (множество всех множеств), применение которого недопустимо, ибо оно приводит к противоречию. В конце второго тома Фреге отметил: «Вряд ли с ученым может приключиться что-нибудь худшее, чем если у него из-под ног выбьют почву в тот самый момент, когда он завершит свой труд. Именно в таком положении оказался я, получив письмо от Бертрана Рассела, когда моя работа уже была почти закончена». Фреге ничего не знал о парадоксах, обнаруженных за то время, пока он писал свою книгу.

Бертран Рассел независимо наметил ту же программу и, работая над ее осуществлением, узнал о работах Фреге. В своей «Автобиографии» (1951) Рассел признает также, что на него оказали влияние взгляды Пеано, с которым он встретился на II Международном конгрессе математиков в Париже в 1900 г.:

Конгресс стал поворотным пунктом в моей интеллектуальной жизни, потому что на нем я встретил Пеано. Я уже знал его имя и некоторые из его работ… Мне стало ясно, что используемые им обозначения представляют собой тот самый инструмент анализа, на поиск которого я затратил не один год, и что, изучив обозначения Пеано, я обрету новый мощный аппарат, о создании которого давно мечтал.

В «Принципах математики» (1-е изд. — 1903) Рассел говорит прямо: «Тот факт, что вся математика есть не что иное, как символическая логика, — величайшее открытие нашего века».

В начале XX в. Рассел, как и Фреге, надеялся, что если фундаментальные законы математики удастся вывести из логики, то поскольку логика, несомненно, является сводом нетленных истин, математические законы также окажутся истинными — и тем самым проблема непротиворечивости будет разрешена. В книге «Мое философское развитие» (1959) Рассел писал, что стремился прийти к «совершенной математике, не оставляющей места для сомнений».

Разумеется, Расселу было известно, что Пеано вывел свойства вещественных чисел из аксиом для целых чисел. Знал он и о том, что Гильберт предложил систему аксиом для всей системы вещественных чисел. Однако во «Введении в математическую философию» (1919) Рассел заметил по поводу аналогичного подхода Дедекинда: «Метод постулирования того, что нам требуется, обладает многими преимуществами, но такими же преимуществами обладает воровство перед честным трудом». В действительности Рассел был озабочен тем, что постулирование десяти или пятнадцати аксиом о числах отнюдь не гарантирует их непротиворечивость и истинность. По выражению Рассела, постулируя, мы излишне полагаемся на счастливый случай. В то время как Рассел в начале XX в. не сомневался, что принципы логики — истины и поэтому они непротиворечивы, Уайтхед в 1907 г. предостерегал: «Невозможно формально доказать непротиворечивость самих логических посылок».

Многие годы Рассел считал, что принципы логики и объекты математического знания существуют независимо от разума и лишь воспринимаются разумом. Знание объективно и неизменно. Свою позицию Рассел ясно изложил в книге «Проблемы философии» (1912).

Когда дело касалось проблемы истины в математике, Рассел готов был пойти еще дальше, чем Фреге. В юности Рассел был убежден, что математика служит источником истин о реальном мире. Рассел не мог указать, какая из конфликтующих геометрий (евклидова или неевклидова) истинна, — тем более что обе соответствуют реальному миру (гл. IV), — но в «Очерке оснований геометрии» (1898) ему удалось найти несколько математических законов (например, закон, согласно которому физическое пространство должно быть однородно,т.е. должно всюду обладать одинаковыми свойствами), являющихся, по его мнению, истинами. В то же время трехмерность пространства Рассел считал эмпирическим фактом. Тем не менее существует объективный реальный мир, о котором мы можем получать точные знания. Поэтому-то Рассел и пытался найти математические законы, которые вместе с тем должны быть физическими истинами. Эти математические законы должны были следовать из логических принципов.

В «Принципах математики» Рассел обобщил свои взгляды в отношении физической истинности математики. По его словам, «все утверждения относительно всего реально существующего, например пространства, в котором мы живем, относятся к экспериментальной или эмпирической науке, а не к математике; утверждения, относящиеся к прикладной математике, возникают в тех случаях, когда в утверждениях, относящихся к чистой математике, одно или несколько переменных полагают равными некоторым константам…» Даже в этом варианте Рассел продолжал верить, что какие-то основополагающие физические истины содержатся в математике, выводимой из логики, В ответ на замечания скептиков, утверждавших, что абсолютных истин не существует, Рассел заявил: «Математика служит вечным укором подобному скептицизму, ибо ее здание, возведенное из истины, противостоит неколебимо и неприступно всему оружию сомневающегося цинизма».

Идеи, в общих чертах намеченные Расселом в «Принципах математики», были подробно развиты им совместно с Алфредом Hopтом Уайтхедом {110} (1861-1947) в трехтомном труде «Основания математики» ( Principia Mathematica[95]*, 1-е изд. — 1910-1913 гг.). Так как именно в этом фундаментальном труде содержался окончательный вариант изложения позиции логистической школы, ознакомимся хотя бы бегло с его содержанием.

Авторы начинают с построения самой логики. Они тщательно формулируют аксиомы логики и выводят из них теоремы, используемые в последующих рассуждениях. Как и подобает любой аксиоматической теории (гл. VIII), построение логики начинается с неопределяемых понятий. Назовем некоторые из них: понятие элементарного высказывания, присвоение элементарному высказыванию значения истинности, отрицание высказывания, конъюнкция и дизъюнкция двух высказываний, понятие пропозициональной функции.

110

Рассчитанное

на самого широкого читателя изложение взглядов А. Уайтхеда (а частично и Б. Рассела) на математику можно найти в (к сожалению, сейчас уже труднодоступной) книге [57].

Рассел и Уайтхед снабдили неопределяемые понятия пояснениями, хотя и подчеркнули, что эти пояснения не входят в логическое построение теории. Под высказыванием и пропозициональной функцией они понимали то же, что и Пирс. Например, «Джон — человек» — высказывание, « x— человек» — пропозициональная функция. Под отрицанием понималось высказывание «Неверно, что …», в котором многоточием обозначено отрицаемое высказывание; так, если pесть высказывание «Джон человек», то под его отрицанием, обозначаемым символом ~p,понимается высказывание «Неверно, что Джон — человек» или «Джон не человек». Под конъюнкцией двух высказываний pи q,обозначаемой pq,Рассел и Уайтхед понимали составное высказывание « pи q», а под дизъюнкцией pи q,обозначаемой p\/q, — составное высказывание « pили q». Смысл связки «или» здесь такой же, как в объявлении «Обращаться по телефону 22-22-38 или 22-22-39», означающем, что обращаться можно либо по телефону 22-22-38, либо по телефону 22-22-39, но можно и по тому, и по другому (неисключающее «или»). В предложении «Это лицо — мужчина или женщина» связка «или» имеет иной, более привычный, смысл: либо мужчина, либо женщина, но, разумеется, никак не мужчина и женщина одновременно (исключающее «или»). Математики используют «или» в первом (неисключающем) смысле, хотя иногда «или» употребляется только во втором смысле. {111} Например, в предложении «Треугольник ABC— равнобедренный или четырехугольник PQRS— параллелограмм» связка «или», как правило, неисключающая, а в предложении «Каждое отличное от нуля вещественное число положительно или отрицательно» связка «или» исключающая — ведь имеющиеся у нас дополнительные сведения о положительных и отрицательных числах говорят нам, что одно и то же число не может быть одновременно и положительным, и отрицательным. Итак, в «Основаниях математики» высказывание « pили q» означает, что pи qоба истинны, или что pложно, a qистинно, или что pистинно, a qложно.

111

Создатель современной алгебраической структуры математической логики Дж. Буль в качестве основных операций над высказываниями использовал конъюнкцию и исключающую дизъюнкцию (которую сегодня чаще называют «симметрической разностью» высказываний pи q).

Наиболее важное отношениемежду высказываниями — отношение следования, или импликация, означающая, что из истинности одного элементарного высказывания вытекает истинность другого. {112} В работе Рассела и Уайтхеда импликация обозначается символом

; при этом под записью (импликацией) p
qpвлечет q» или «из pследует q») они понимают примерно то же, что Фреге понимал под материальной импликацией (гл. VIII): утверждение « pвлечет q» (из pследует q) означает, что если pистинно, то и qобязано быть истинным, а если pложно, то qможет быть истинно или ложно, т.е. из ложного высказывания следует все что угодно. Такое понятие следования (импликации) высказываний, по крайней мере в некоторых случаях, представляется вполне естественным. Например, если верно, что a— четное число, то и число 2aдолжно быть четным. Но если не верно, что a— четное число, то 2aможет быть как четным, так и нечетным (в случае, если aне целое, скажем дробное, число). Иначе говоря, если высказывание « a— четное число» ложно, то из него может следовать любое заключение.

112

Здесь терминология (и символика) авторов «Оснований математики» несколько расходится с принятой в нашей литературе. Следует различать (бинарное) отношение следованиямежду высказываниями, которое может иметь или не иметь место (в абстрактной форме — подмножество декартова квадрата x, где — множество высказываний; отношение «из pследует q» записывают как p q, но иногда и наоборот — как p q), и импликацию— (бинарную) операцию алгебры высказываний, сопоставляющую двум высказываниям pи qтретье высказывание p q, которое, как и любое, высказывание, может быть истинным или ложным; при этом истинность импликации p qравносильна тому, что (в обозначениях Рассела — Уайтхеда) p q.

Поделиться:
Популярные книги

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV