Матвей Петрович Бронштейн
Шрифт:
В пользу этого предположения говорит еще то, что Бронштейн, очень аккуратный в ссылках, заметку своих друзей нигде не упоминает [50] .
в) У истоков квантово-релятивистской астрофизики. Герой нашей книги ожидал сGh-теорию, питаясь не только общими соображениями, воплощенными в сС/-схеме. Иначе он был бы только философствующим физиком. Но он был физиком практикующим. И зачатки cGh-физики находил среди конкретных физико-математических выкладок. Такие выкладки содержатся в его работах о релятивистском обобщении принципа неопределенности (см. разд. 5.4), о свойствах излучения при очень высоких — астрофизических — температурах, о внутреннем строении звезд.
50
В
Большую статью Бронштейна 1933 г. [20] относят к основополагающим для теории белых карликов [198, с. 110]. В ней действительно физически очень ясно и внимательно рассмотрено равновесие гравитирующего шара, состоящего из вырожденного ферми-г9аза в не-и ультрарелятивистском предельных случаях [51] . В этой работе также впервые получено уравнение для такой звезды в общем случае, когда степень релятивизма меняется от центра звезды к поверхности [20, с. 99]. Бронштейн отметил, однако, что решение этого уравнения связано с «утомительными вычислениями». Вычисления проделал в 1935 г. Чандрасекар [296]. Теорию белых карликов он довел до количественных результатов, полученных численным интегрированием (Чандрасекар отметил, что само уравнение он дал в предварительной заметке 1934 г. [295], однако советские астрофизики знали, что Бронштейн получил его первым [92—93]).
51
В 1926 г. Р. Фаулер объяснил большую плотность белых карликов тем, что они состоят из вырожденного ферми-газа; релятивистский ферми-газ в применении к теории сверхплотных звезд впервые рассматривал в 1928 г. Я. И. Френкель [290-291].
И все же статья Бронштейна, как и предшествующая ей заметка Ландау [214] (на которую он ссылается), были посвящены не белым карликам; в обеих статьях белые карлики не упоминаются. Уже названия статей говорят о том, что авторы видели перед собой более общую проблему — проблему физической природы звезд и механизма их излучения. Авторов-физиков звезда интересовала прежде всего как загадочный физический объект. Это, в частности, объясняет, почему Бронштейн не «пробивал» решение полученного им уравнения (для «чистого» астрофизика задача несомненно достойная).
Статью [20] Бронштейн начинает с критики теории Эддингтона за то, что она пыталась описать устройство звезды независимо от вопроса об источнике звездной энергии. Затем, следуя Ландау, он рассматривает газовый шар без всяких источников энергии при нулевой температуре. Такая звезда из классического идеального газа не может быть в равновесии и будет сжиматься, пока не начнут проявляться законы квантовой статистики. Именно так предметом рассмотрения и стало равновесие шара из вырожденного ферми-газа. Следует отметить, что результатом заметки Ландау тогда считалось вовсе не существование предельной массы для такой конфигурации
Этот замечательный результат, как указывает Бронштейн, впервые получен Стонером в 1930 г. [266]. Однако Стонер не увидел ничего страшного в неограниченном сжатии звезды с массой больше предельной: он считал, что такое сжатие будет приводить просто к разогреву и излучению.
Ландау же, поскольку при массе, большей М0, «во всей квантовой теории не существует причины, которая предотвратила бы сжатие системы в точку», а с другой стороны, «в действительности такие массы мирно существуют в виде звезд», приходит к заключению, что «все звезды тяжелее, чем 1,5 М0, содержат область, в которой нарушаются законы квантовой механики (и тем самым
52
Сейчас нелегко понять отношение Ландау к менее «патологическим» источникам звездной энергии, в частности к термоядерному синтезу водорода в гелий: «Было бы очень странно, если бы высокие температуры могли помочь делу уже только потому, что помогают кое-чему в химии (цепные реакции!)». Но, желая понять физику того времени, необходимо понять и этот скепсис (см. гл. 4).
Таким образом, самого Ландау астрофизика приводила только к проблеме сй-теории, G играла роль внешнего фактора, так сказать, стенок сосуда. А для Бронштейна, вполне принимавшего выводы Ландау, астрофизический материал говорил о необходимости построения cGA-теории: «Релятивистская теория квант, соединяющая волновую механику со специальным принципом относительности, должна будет подвергнуться дополнительному расширению в духе общего принципа относительности» [20, с. 102]. Такую необходимость Бронштейн поясняет простым соображением: если Солнце сожмется до ядерной плотности, то его радиус станет сравним с гравитационным.
А одним из наиболее интересных следствий указанных соображений Бронштейн назвал необходимость создания новой физической теории, применимой ко всем частям Вселенной, при этом «сами понятия пространства и времени, а следовательно и формулировка общего принципа относительности и уравнений тяготения, должны подвергнуться в этой будущей теории каким-то весьма глубоким преобразованиям» [20, с. 103]. Эти рассуждения, стоявшие за cGh-схемой [21], были конкретизированы в диссертации.
5.3. Квантовая теория слабого гравитационного поля
Результаты своей работы по квантованию гравитации Бронштейн изложил в двух статьях: краткий вариант на немецком языке — «Квантовая теория слабых гравитационных полей» — датирован августом 1935 г., подробный — «Квантование гравитационных волн» — 14 декабря 1935 г.
Большая статья (42 ЖЭТФовские страницы) совпадает с диссертацией по названию и, видимо, также и по тексту в целом. Работа состоит из трех частей. Первая, посвященная гравитационным волнам в классическом случае, служит введением для следующих двух, в которых развивается квантовая теория слабого гравитационного поля в пустоте и при наличии материи.
Исходя из данной Гейзенбергом и Паули общей схемы квантования полей, Бронштейн рассмотрел гравитацию в приближении слабого поля, когда можно не учитывать геометрический характер гравитационного поля и рассматривать его как тензорное поле в плоском пространстве-времени.
Намерение насытить диссертацию длинными формулами, о котором М. П. поведал И. К. Кикоину, осуществить было нетрудно. Работа содержит весьма громоздкие математические выкладки (при этом еще промежуточные этапы опущены). В этом обстоятельстве вполне отразилась специфика рассматриваемой проблемы.
Все дело в том, что приближение слабого поля в ОТО имеет и специальный, и в то же время достаточно общий характер — число степеней свободы максимально возможное, и десятикомпонентность гравитационного «потенциала» не укрощается ни симметриями, ни мощью римановой геометрии, потому что общая ковариантность в этом случае фактически уже не действует. Однако координатный произвол достаточно велик, и необходимо изрядно потрудиться, чтобы отделить координатные эффекты от физических.
Мы не станем вникать в техническую сторону бронштейновского квантования слабой гравитации, а отметим только некоторые характерные особенности его работы.