Матвей Петрович Бронштейн
Шрифт:
А что касается бронштейновских результатов по квантовой теории слабого гравитационного поля, то их значение не зависит от судьбы единой теории. На защите диссертации Фок сказал: «В рассмотренном М. П. приближении сомневаться нельзя. Если даже будет неверной теория Эйнштейна, то результаты М. П. не изменятся» [173, с. 319] (корявость слога здесь можно отнести на счет стенографии; Фок, видимо, говорил о квантовой ограниченности ОТО). Действительно, результаты Бронштейна сохраняют свое значение и сейчас, поскольку навсегда сохранит свое значение вопрос соотношения фундаментальных теорий гравитации и областей их применимости.
На определенных этапах развития физики возникает потребность в обобщении данной фундаментальной теории. Гравитация в XVII в. получила G-теорию, в 1915
Поэтому результаты Бронштейна, относящиеся к приближению слабой квантовой гравитации, сохранят свой смысл и значение и в будущем. Не следует думать, что такая оценка лишь проявление сверхбережного отношения историка к правильным физическим результатам. Например, с тех пор как была построена квантовая теория слабой гравитации, проделано большое количество расчетов в рамках, так сказать, квантовой гравидинамики: рассчитывались разнообразные реакции элементарных частиц с участием гравитонов. Но правильность подобных — сложных математически — расчетов отнюдь не делает их физически осмысленными (даже если не говорить о неперенормируемости линейной квантовой гравидинамики). Дело в том, что результат любого подобного расчета должен содержать безразмерный множитель типа 10– и не может иметь ощутимую величину в условиях применимости самой теории. Ощутимыми и даже принципиально важными квантово-гравитационные эффекты могли бы стать при больших концентрациях энергии (которые бы скомпенсировали число 10– 40), т. е. в астрофизических и космологических условиях, однако в таких условиях уже неприменима сама линейная квантовая гравидинамика. Слабость гравитационного взаимодействия могла бы еще компенсироваться достаточно большим — космологическим — временем взаимодействия; такую ситуацию Бронштейн рассмотрел год спустя (см. разд. 5.5).
5.4. «...Принципиальное различие между квантовой электродинамикой и квантовой теорией гравитационного поля». Квантово-гравитационные границы
Рассказ предыдущего раздела о квантово-гравитационных результатах Бронштейна в некоторой мере искажает историко-научную ситуацию, потому что там рассказано лишь о решении задач, относящихся к переходам «сверху вниз» — символически: (cGh)—-(cG) и (cGh)—(G). А этим задачам в работе Бронштейна предшествует анализ измеримости гравитационного поля, касающийся переходов «снизу вверх»: (cG)— —(cGh) и ^^—^Gh). Этот анализ, приведший к обнаружению квантово-гравитационных границ, особенно интересен для сегодняшней теоретической физики.
а) Проблема ch-измеримости. То что Бронштейн, занявшись квантованием гравитации, уделил внимание вопросу измеримости, вполне естественно и для биографии науки, и для научной биографии Бронштейна. История этого вопроса начинается с принципа неопределенности (1927), который установил h-ограничения на применимость понятий, оставшихся от классической физики. Соотношения неопределенностей ограничивали только совместную измеримость некоторых —
сопряженных — пар величин, например координаты и импульса
но
Сразу после того, как был осознан смысл h-ограничений, возник вопрос о характере квантовых ограничений при учете релятивизма — о с/-ограничениях. Мысленные эксперименты (начиная с гейзенберговского микроскопа) давали сколь угодно точные результаты, лишь игнорируя с-теорию. И, кроме того, важнейший физический объект — электромагнитное поле — был релятивистским, как известно, еще до создания теории относительности; ведь уравнения Максвелла включают в себя константу с. Ограничения измеримости, или соотношения неопределенностей, для электромагнитного поля рассматривали сам Гейзенберг [158, с. 41], Фок и Йордан [280].
Однако особенно большое внимание привлекло к себе исследование с/-ограничений, выполненное Ландау и Пайерлсом в 1931 г. Анализ мысленных экспериментов в с/-области приводил уже не только к парным, но и к индивидуальным неопределенностям величин, описывающих частицу и поле. Согласно Ландау и Пайерлсу понятие «поле в точке» полностью неопределимо. На этом основании они ставили под вопрос тогдашнюю квантовую теорию электромагнитного поля и предсказывали, что «в правильной релятивистской квантовой теории, которая пока не существует, не будет ни физических величин, ни измерений в смысле волновой механики» [221, с. 69].
Этот прогноз вполне соответствовал другим вопиющим указаниям на принципиальную недостаточность тогдашней физики (±-трудность уравнения Дирака, парадокс Клейна, расходимость собственной энергии и др.) В начале 30-х годов в неизбежной с/-перестройке понятий (включая понятие пространства-времени) были уверены многие теоретики, и анализ измеримости поля был наиболее фундаментальным доводом.
Ландау и Пайерлс считали свою работу развитием идей Бора и теоретическим обоснованием его гипотезы о несохранении энергии. Однако сам Бор столь решительный вывод не принял, и в 1933 г. «обезвредил» его (совместно с Розенфельдом) после упорных дискуссий с Ландау и Пайерлсом. Слабое место в их рассуждениях Бор усмотрел в том, что они для измерения поля использовали в качестве пробных тел только точечные заряды — идеализацию, перенесенную в теорию поля из теории атома. Однако «для проверки аппарата квантовой электродинамики,— подчеркнул Бор,— допустимы лишь измерения с пробными телами конечных размеров, внутри которых распределен заряд; это следует из того, что всякое однозначным образом вытекающее из этого аппарата утверждение относится к средним значениям компонент поля, взятым по конечным областям пространства-времени» [121, с. 128]. Это положение Бор связывал с тем, что аппарат квантовой электродинамики не включает в себя органически каких-либо предположений об атомизме электричества. А если в мысленных измерениях пользоваться полным произволом в отношении заряда пробного тела, то указанные Ландау и Пайерлсом пределы действительно снимаются.
Характер с/-теории занимал Бронштейна с тех пор, как ее «призрак начал бродить» по физике. И соображения, связанные с наблюдаемостью, с измеримостью физических величин играли значительную роль. В 1931 г. в рецензии на книгу Дирака, упрекая того в недооценке квантово-релятивистских проблем, Бронштейн цитирует ехидное определение Паули, прозвучавшее, видимо, на Одесском съезде 1930 г.: «Die Observable ist eine Grosse, die man nicht messen kann» («Наблюдаемая — это величина, которую невозможно измерить»); в формулировке Бронштейна: «принцип неопределенности обычной квантовой механики чересчур определен для релятивистской теории квантов».
На работу Бора—Розенфельда Бронштейн откликнулся заметкой, посвященной измеримости в с/-области [24]. Надо сказать, что весьма объемную статью Бора—Розенфельда не назовешь очень ясной. Заметка Бронштейна раз в 20 короче. И ее выкладки лучше соответствуют ориентировочному характеру мысленных экспериментов, чем хитроумные рассуждения [121], в которых вместе с мысленными пружинками и массивными каркасами участвуют произвольно большие заряды в произвольно малых объемах (природе не известные).