Матвей Петрович Бронштейн
Шрифт:
При этом Бронштейн в ясной форме воспроизвел боровский вывод о несмертельном характере с/-ограничений для теории поля.
Проведем упрощенные выкладки, измеряя напряженность электромагнитного поля Е по изменению импульса пробного тела с зарядом Q и массой М:
Неопределенность AE составляют два слагаемых. Первое порождается неопределенностью измерения импульса:
и
Второе слагаемое — это «обратное» поле, источником которого является ток — произведение заряда пробного тела на его скорость. Неопределенность этой скорости (скорости отдачи), соответствующая локализации пробного тела с неопределенностью Ax, равна
Устремляя Ах к нулю и полагая, что р и ц достаточно быстро, но по разным законам стремятся к бесконечности, можно считать, что АЕ—0 при Ах—0. Тем самым оправдывается понятие «электромагнитное поле в точке».
Бор особенно подчеркивал, что неопределенность поля, обусловленная влиянием самого пробного заряда, может быть сделана, вопреки Ландау—Пайерлсу, сколь угодно малой, а Бронштейн указал, что для максимальной точности измерения поля не следует стремиться к наименьшей реакции излучения на пробное тело. И хотя общий вывод остался прежним, Бронштейн подчеркнул, что возможности теории когда-нибудь придется согласовать с возможностями природы: «Принципиальная невозможность измерить с произвольной точностью поле в будущей релятивистской теории квант будет связана с принципиальным атомизмом материи, т. е. с принципиальной невозможностью беспредельно увеличивать [плотность заряда] р».
Таким образом, в заметке 1934 г. Бронштейн сбалансированно представил с/-ограничения на измеримость электромагнитного поля. Поэтому не удивительно, что год спустя он обратился к анализу измеримости гравитационного поля.
b) cGh-измеримость и квантовые границы ОТО. Проследим за этим анализом внимательно, вместе с Бронштейном «немного мысленно поэкспериментируем!» (так называется параграф в [30]). Напомним сначала, что в приближении слабого гравитационного поля метрический тензор gik представляется в виде
где 8ik — плоская метрика Минковского, а все величины hik«1. В этом случае, как показал еще Эйнштейн в 1916 г., общие нелинейные уравнения ОТО сводятся к линейным (с точностью до членов высшего порядка малости по hik):
где Tik— тензор энергии-импульса, а к=16лlbт/с2.
Сконструировав подходящий для этого случая гамильтониан гравитационного поля, Бронштейн выписывает перестановочные соотношения в соответствии с общей схемой квантования полей Гейзенберга и Паули 1929 г.
Однако, прежде чем перейти к построению квантовой картины слабого гравитационного поля, Бронштейн обращается к вопросу, касающемуся синтеза квантовых и гравитационных представлений в общем случае, а не только в случае слабого поля. После краткого обсуждения перестановочных соотношений он пишет:
«Можно было бы думать, что здесь, как и в квантовой электродинамике, получается вполне последовательная квантово-механическая схема, содержащая величины, которые, правда, не всегда могут быть измеряемы с произвольно задаваемой точностью одновременно, но каждая из них может быть сколь угодно
простейшего примера измерение величины [00, 1], т. е.
здесь и далее х=х , Г100 — современное обозначение символа Кристоффеля [00,1].
Для измерения значения Г100, среднего по объему V и за промежуток времени Т (а согласно Бору—Розенфельду в квантовой теории поля следует говорить только о такого рода измерениях), надо измерить компоненту рх импульса пробного тела, имеющего объем V, в начале и в конце промежутка времени Т, поскольку в рассматриваемом приближении
где р — плотность пробного тела. Поэтому если измерение импульса имеет неопределенность Арх, то неопределенность
Неопределенность импульса рх состоит из двух слагаемых: обычного квантово-механического
(где Ах — неопределенность в координате) и «члена, связанного с полем тяготения, создаваемого самим измерительным прибором вследствие отдачи при измерении импульса». Второе слагаемое Бронштейн оценивает следующим образом. Уравнение (1) с учетом используемого приближения дает
Если на отдельное измерение импульса затрачивается время At (при этом должно быть At<<T), то неопреде
ленность величины h01 , связанная с неопределенностью скорости отдачи vx~Ax/At, имеет порядок
и согласно (2) неопределенность напряженности гравитационного поля
Соответствующая неопределенность импульса, связанная с собственным гравитационным полем пробного тела, имеет тогда порядок
Тогда
(6)
Продолжительность измерения импульса At ограничивается снизу двумя условиями. Во-первых, должно быть At>Ax/c, чтобы скорость отдачи, вызванной изменением импульса, была меньше скорости света. Отсюда и из (5) следует
Во-вторых, из самого смысла измерения поля в объеме V следует, что величина Ax должна быть меньше размеров пробного тела: Ax<V13. Учитывая (5), получим