Чтение онлайн

на главную - закладки

Жанры

Микромеханические системы и элементы
Шрифт:

1.3.1. Преимущества технологии «3D-МЭМС»

В качестве преимуществ технологии «3D-МЭМС» можно выделить следующие:

• использование монокристаллического кремния для изготовления МЭМС (идеально упругий материал: нет пластической деформации, выдерживает до 70 000 g циклов ускорений);

• емкостной принцип действия датчиков (обеспечивает прямое измерение отклонения в зависимости от большого числа вариантов величины зазора между двумя плоскими поверхностями; при этом емкость или заряд на паре пластин зависят от ширины зазора между ними

и площади пластины);

• высокий уровень точности и стабильности;

• легкая диагностика при помощи ограниченного числа конденсаторов;

• низкая потребляемая мощность;

• высокая герметичность датчиков (позволяет снизить требования к упаковке; обеспечивает высокую надежность, так как частицы или химические вещества не могут попасть в элемент);

• симметричные структуры элементов (улучшенная стабильность нуля акселерометра, линейность и чувствительность по оси; низкая зависимость показаний от температуры; нелинейность обычно ниже 1 %; чувствительность по оси обычно не превышает 3 %);

• возможность производств датчиков по индивидуальному заказу (получение конкретных уровней чувствительности и частотных характеристик, необходимых заказчику; гибкие двухчиповые решения);

• реальные 3D-структуры (большие защитная масса и емкость обеспечивают высокую производительность при работе в диапазоне измерений при малых g; хорошая стабильность по «0» и низкое влияние шума на показания датчика; образование 3D-сенсорных элементов).

1.3.2. Принцип действия емкостного акселерометра

В рассматриваемом типе трехосевых акселерометров принцип определения ускорения достаточно прост и надежен: инерционная масса дает возможность ощущать ускорение за счет перемещения в соответствии со вторым законом Ньютона. Основные элементы акселерометра – тело, пружина и инерционная масса (ИМ).

Когда скорость тела сенсора изменяется, ИМ через пружину так же побуждается последовать этим изменениям. Сила, воздействующая на ИМ, является причиной изменения ее движения, поэтому пружина изгибается, и расстояние между телом и ИМ изменяется пропорционально ускорению тела. Рабочие принципы сенсоров различаются в зависимости о того, по какому принципу определяется движение между телом и ИМ.

В емкостном сенсоре тело и ИМ изолированы друг от друга, и их емкость, или емкостной заряд, измеряется. Когда дистанция между ними уменьшается, емкость увеличивается, и электрический ток идет по направлению к сенсору.

В случае, когда расстояние увеличивается, наблюдается обратная ситуация: сенсор преобразует ускорение тела в электрический ток, заряд или напряжение. Превосходные характеристики рассматриваемых датчиков основаны на технологии емкостного измерения и хорошо подходят для определения малых изменений в движении.

Чувствительный элемент для определения ускорения сделан из монокристального кремния и стекла. Это обеспечивает сенсору исключительную надежность, высокую точность и устойчивость показаний по отношению к воздействию времени и температуры. Как правило, чувствительный элемент датчика с диапазоном измерений ±1 g выдерживает

как минимум 50 000 g ускорений (1 g = ускорение, вызванное силой тяжести Земли). Датчик измеряет ускорение как в положительном, так и в отрицательном направлении и чувствителен к статическому ускорению и вибрации.

«Сердцем» акселерометра является симметричный чувствительный элемент (ЧЭ), изготовленный по технологиям объемной микромеханики, у которого есть два чувствительных конденсатора. Симметрия ЧЭ уменьшает зависимость от температуры и чувствительности по оси и улучшает линейность. Герметичность датчика обеспечивается за счет анодного соединения пластин друг с другом. Это облегчает корпусирование элементов, повышает надежность и позволяет использовать газовое затухание в сенсорном элементе.

Концепция гетерогенной Chip-on-MEMS-интеграции МЭМС-элементов и интегральных микросхем

При производстве трехосевого акселерометра применяют новую концепцию гетерогенной интеграции для объединения чувствительного элемента МЭМС и микросхемы (ASIC): ЧИП на МЭМС или CoM (Chip-on-MEMS).

Эта концепция основана на комбинации инкапсулированных на уровне пластины 3D-МЭМС-структур, технологии корпусирования на уровне пластины и технологии чипа на пластине. Все указанные процессы уже существуют на протяжении нескольких лет. Их комбинация позволяет решать наиболее сложную проблему корпусирования: как экономически эффективно совместить МЭМС-элементы и интегральные микросхемы. Исходя из описанной концепции, технология включает в себя следующие шаги: перераспределение и изоляция слоев на МЭМС-пластине, нанесение 300 микронных шариков припоя, установка на МЭМС-пластину микросхем, пассивация зазоров между микросхемами и МЭМС, тестирование пластины с МЭМС-устройствами, резка пластины и финальное тестирование и калибровка сенсоров после резки.

На рис. 1.6 и 1.7 (выше) представлены симметричный чувствительный элемент емкостного акселерометра и вид установки на МЭМС-пластину интегральных микросхем.

Благодаря технологии CoM можно получить полноценное функциональное МЭМС-устройство с размером корпуса по периметру 4x2 мм и высотой 1 мм. Данная технология полностью готова для производства датчиков, как для небольших партий, так и в промышленных масштабах.

В табл. 1.2 представлены технические характеристики емкостного трехосевого акселерометра.

Таблица 1.2. Технические характеристики емкостного трехосевого акселерометра

Благодаря отличным характеристикам по стабильности и вибрационной надежности рассматриваемые акселерометры могут успешно применяться в следующих сферах:

• электронный контроль стабильности движения контролируемого устройства;

• система помощи при старте двигателя на подъеме;

• электронный стояночный тормоз;

• электронная защита от переворачивания;

Поделиться:
Популярные книги

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Как притвориться идеальным мужчиной

Арсентьева Александра
Дом и Семья:
образовательная литература
5.17
рейтинг книги
Как притвориться идеальным мужчиной

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

В погоне за женой, или Как укротить попаданку

Орлова Алёна
Фантастика:
фэнтези
6.62
рейтинг книги
В погоне за женой, или Как укротить попаданку

Дочь Хранителя

Шевченко Ирина
1. Легенды Сопределья
Фантастика:
фэнтези
9.09
рейтинг книги
Дочь Хранителя

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Английский язык с У. С. Моэмом. Театр

Франк Илья
Научно-образовательная:
языкознание
5.00
рейтинг книги
Английский язык с У. С. Моэмом. Театр

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14