Мир по Эйнштейну. От теории относительности до теории струн
Шрифт:
ГЕЙЗЕНБЕРГ:…Поскольку в теории естественно вводить лишь наблюдаемые величины, мне казалось правильным не вводить ничего, кроме частот и амплитуд {143} , выступающих в роли, так сказать, представителей орбит электронов.
ЭЙНШТЕЙН: Неужели вы всерьез думаете, что в физической теории можно ограничится лишь введением наблюдаемых величин?
ГЕЙЗЕНБЕРГ: Я думал, что вы использовали буквально эту же идею в качестве основы вашей теории относительности. Вы специально подчеркивали, что нельзя говорить об абсолютном времени, потому как никто не может наблюдать это абсолютное время. Вы говорили, что только показания часов, сделанные в движущейся или покоящейся системе, являются определяющими для измерения времени.
143
Речь идет о таблице fnm = (Em– En)/h и о таблице anm, упомянутой в комментариях чуть выше.
ЭЙНШТЕЙН: Возможно, я действительно использовал подобного рода философию, но от этого идея не становится
Мы выделили последнюю фразу, поскольку она еще долго звучала в голове молодого Гейзенберга и сыграла важную (хотя и малоизвестную) роль в дальнейшем развитии квантовой теории. Скажем лишь, что этот «урок» (теория сама решает, что является наблюдаемым) был усвоен Эйнштейном в результате долгих лет блужданий в поисках конструкции общей теории относительности. В течение многих лет связь между координатами пространства и времени и измерениями длин и промежутков времени (кристально ясная в специальной теории относительности) оставалась весьма туманной в общей теории относительности. Эйнштейн сумел разобраться с причиной такого долгого непонимания лишь в конце 1915 г., когда, уже построив теорию, осознал, что математический формализм теории относительности сам позволяет определить a posteriori то, что является наблюдаемым, когда пространство-время деформируется материей.
«Волны тут, кванты там!»
В начале 1926 г., приблизительно в то же время, когда Гейзенберг выступал на семинаре в Берлине, другой математический формализм был предложен австрийским теоретиком Эрвином Шредингером в качестве замены «старой» теории квантов Планка – Эйнштейна – Бора. Этот формализм, называемый «волновой механикой», согласно самому Шредингеру, уходил корнями в идеи Луи де Бройля, а также в «короткие, но удивительно прозорливые» заметки, сделанные Эйнштейном (в его письмах и статье 1924 г., обсуждавшейся в предыдущей главе). Эта волновая механика казалась абсолютно отличной от матричной механики Борна – Гейзенберга – Йордана. В одной состояние рассматриваемой физической системы (скажем, электрон, движущийся по орбите вокруг ядра атома водорода) описывалось волновой амплитудой А, непрерывной функцией {144} времени и координат электрона, а другая говорила лишь о дискретных переходах между различными возможными стационарными состояниями атома и описывала их посредством бесконечных таблиц амплитуд переходов anm. Два описания, казалось, были диаметрально противоположны друг другу. Первое давало полностью непрерывную картину (как во времени, так и в конфигурационном пространстве системы), тогда как предметом изучения второго были исключительно дискретные переходы системы. Однако, несмотря на это, Шредингер сумел достаточно быстро показать математическую эквивалентность двух подходов. А именно, он доказал, что знание «волнового уравнения», описывающего распространение непрерывной амплитуды А, позволяет в то же время находить возможные стационарные состояния системы, их квантовые энергии и бесконечные таблицы амплитуд переходов между этими состояниями. Грубо говоря, возможные стационарные состояния были аналогичны ряду состояний чистой вибрации упругого объекта, такого, например, как струна фортепиано, которая может звучать в основном тоне или же в обертоне, соответствующем более высокой гармонике (вторая на октаву выше первой, третья на квинту выше второй и т. д.).
144
Более строго, A есть комплексная функция (A = A1 + iA2), которая обычно обозначается греческой буквой .
На самом деле, какое-то время казалось, что шредингеровское волновое описание было более полным, нежели дискретное описание Борна – Гейзенберга – Йордана. В частности, шредингеровское описание наводило на мысль, что можно даже просто «выбросить» идею квантовой дискретности (несмотря на то что оно позволяло объяснить многие явления, включая эйнштейновскую теорию атомных переходов) и описывать реальность исключительно с точки зрения непрерывных волн.
Изначально Эйнштейн воспринял формализм Шредингера с удовлетворением и даже некоторым облегчением, поскольку этот подход казался ближе его интуитивным представлениям о реальности, нежели колдовские таблицы умножения, используемые Гейзенбергом и компанией. Однако вскоре он был разочарован. В первую очередь потому, что волновая амплитуда А распространяется уже не в обычном трехмерном пространстве: для системы из двух частиц это было шестимерное пространство, для системы из трех частиц – девятимерное, для четырех – двенадцатимерное и т. д. К тому же в волновой механике возникали большие сложности при описании всевозможных экспериментальных фактов, которые в течение 20 лет подводили Эйнштейна и других исследователей к необходимости введения дискретной структуры в квантовой механике. В августе 1926 г. в письме Паулю Эренфесту Эйнштейн следующим образом подытоживает свои чувства:
«Волны тут, кванты там! Реальность тех и других прочнее камня. Но дьявол свел их вместе (и этот союз так же реален и прекрасен)».
Эту неудовлетворенность в отношении парадоксального поведения природы, проявляющей одновременно волновые и корпускулярные свойства, Эйнштейн сохранял до конца своей жизни. Как мы увидим, то, что убедило большинство ученых, не смогло развеять его сомнений.
«Духовое поле» Эйнштейна, «амплитуда вероятности» Борна и «соотношения неопределенностей» Гейзенберга
Нашей целью здесь не является детальное обсуждение развития физической интерпретации математического формализма квантовой теории. Мы собираемся лишь описать ту важную, хотя иногда и скрытую роль, которую в этом развитии сыграли определенные идеи Эйнштейна.
Первое существенное продвижение было сделано Максом Борном летом 1926 г. Как он сам описывал {145} :
145
Для обсуждения исторического развития «духовых полей» (Gespensterfeld) Эйнштейна и их влияния на вероятностную интерпретацию волновой амплитуды А (или же «волновой функции пси») см. биографии Эйнштейна (см. Избранную библиографию) и Бора (Niels Bohr‘s Times, Oxford, Clarendon Press, 1991), написанные Абрахамом Пайсом.
146
A является комплексным числом, A = a + ib; «квадрат», о котором здесь идет речь, понимается как квадрат модуля A: |A|^2 = a^2 + b^2.
Вторая часть этой цитаты намекает на тот факт, что «волновое уравнение Шредингера», написанное им в начале 1926 г., является детерминистским уравнением распространения, т. е. уравнением, позволяющим однозначным образом определить временную эволюцию амплитуды А, если известно ее значение в произвольный начальный момент.
«Вероятностная интерпретация» Борна стала серьезным концептуальным прорывом, хотя она принесла больше проблем, нежели решений. Фактически эта интерпретация была лишь гипотезой и требовала подтверждения исходя из математического формализма квантовой теории. Именно так думал Гейзенберг в конце 1926-го и в начале 1927 г. В то время Вернер Гейзенберг работал в группе Нильса Бора в Копенгагене. Он активно обсуждал с Бором возможную физическую интерпретацию математического формализма, так что их беседы иногда затягивались до поздней ночи. В феврале 1927 г., когда Гейзенберг остался один в Копенгагене, поскольку Бор катался на лыжах в Норвегии, ему в голову пришла новая идея о том, как совместить волновое и корпускулярное описания одной и той же квантовой частицы (скажем, электрона). Как он сам рассказывал {147} , воспоминания о его беседе с Эйнштейном годом ранее сыграли решающую роль в его рассуждении:
147
См. часть VI его книги «Физика и философия. Часть и целое» (La Partie et le Tout, op. cit.).
«Это было около полуночи, когда я неожиданно вспомнил мои беседы с Эйнштейном и, в частности, его фразу: “Только теория решает, что является наблюдаемым, а что нет”. Я вдруг сообразил, что здесь-то и нужно искать ключ к загадке, которая так занимала нас [его и Бора]. Тогда я решил совершить ночную прогулку по парку, чтобы подумать над значением этой фразы Эйнштейна».
Именно во время этой ночной прогулки, когда он размышлял о значении фразы Эйнштейна, Гейзенберг открыл свои знаменитые «соотношения неопределенностей» {148} , которые гласят, что произведение «неопределенности» положения частицы и «неопределенности» ее количества движения (или импульса) {149} обязано быть больше постоянной Планка h {150} .
148
Также известны как дисперсионные соотношения.
149
Напомним, что количество движения, или импульс, (релятивистской) частицы описывается выражением p = mv (1 - v^2 / c^2), где m – масса (покоя) частицы, а v – ее скорость.
150
В зависимости от конкретного определения «неопределенностей» минимум их произведения может отличаться от h некоторым числовым множителем.
Гейзенберг понял, что соотношения неопределенностей позволяют прояснить условия, при которых квантовую частицу можно одновременно описывать и как волну, и как частицу. Например, ранее казалось, что наблюдение в детекторах прямых треков частиц, видимых на макроскопическом уровне, обязывает описывать частицу исключительно как локализованную корпускулу. Однако соотношения неопределенностей показывали, что ненулевая ширина трека хорошо согласуется с проявлением волнового поведения частицы на масштабах расстояний, сравнимых с этой шириной.