Мир по Эйнштейну. От теории относительности до теории струн
Шрифт:
Беспорядок и подсчет конфигураций блох
Итак, вернемся к содержанию статьи Эйнштейна, опубликованной в марте 1905 г. Эта статья состоит из нескольких независимых разделов, посвященных разным аспектам теории света и его взаимодействий с веществом. Первый раздел содержит неявную критику работ Планка, о которых мы только что говорили. Фактически Эйнштейн заключает, что правильное применение известных в то время законов физики неминуемо приводит к совершенно определенному закону для излучения черного тела. Этот закон {114} , однако, имеет два существенных недостатка: (i) он категорически не согласуется с экспериментальными измерениями в области больших частот, где применим закон Вина; и (ii) этот закон физически абсурден, поскольку предсказывает, что любая горячая печь или просто дрова должны выдавать бесконечное количество излучения преимущественно в области очень высоких частот. Другими словами, согласно физике XIX в., присев погреться у костра, можно испечься до смерти независимо от температуры огня! На основании этого результата Эйнштейн, безусловно, приходит к выводу, что работы Планка, в которых утверждалась возможность, оставаясь в рамках физики XIX в., вывести другой закон для черного тела, были математически и физически непоследовательны. Однако его статья не содержит явной критики работ Планка. Это может показаться странным, поскольку переписка Эйнштейна того времени показывает, что полный юношеского огня он всегда был готов критиковать своих коллег-физиков, и в том числе весьма знаменитых. Возможно, в сдержанном стиле статьи Эйнштейна следует искать влияние его ближайшего друга Микеле Бессо, того самого, который
114
Этот закон обычно называют «законом Рэлея – Джинса». На самом деле, как отметил Авраам Пейс в своей книге об Эйнштейне (см.: Избранную библиографию), закон нужно было бы называть «законом Рэлея – Эйнштейна – Джинса», поскольку Эйнштейн был первым, кто дал полный вывод этого закона и понял весь его смысл. Оригинальная работа лорда Рэлея (1900 г.) не содержала вывода общего множителя, возникающего в законе.
«С моей стороны, я был твоим слушателем на протяжении 1904–1905 гг., и, возможно, я лишил тебя какой-то части твоей славы, помогая формулировать твои сообщения по проблеме квантов, но взамен я оставил тебе возможность обрести нового друга, Планка».
Так или иначе, этот первый результат подорвал уверенность Эйнштейна в законе черного тела, предложенном Планком. В связи с этим в оставшейся части статьи он пользуется исключительно предложенным ранее законом Вина, имеющим хорошие экспериментальные подтверждения для достаточно высоких частот. Исходя из закона Вина и используя законы термодинамики, ему удается вычислить «энтропию» f излучения заданной частоты, содержащегося в заданном объеме V. Напомним, что энтропией физической системы называется определенная мера беспорядка, которая отражает факт нашего, вообще говоря, неполного знания об этой системе.
Чтобы разъяснить понятие энтропии и ее связь с идеей беспорядка, приведем один пример. Рассмотрим шахматную доску или квадрат восемь на восемь, содержащий, таким образом, 64 клетки. В начальный момент времени разместим определенное количество блох на одной из клеток этой шахматной доски и позволим блохам передвигаться свободно, т. е. прыгать в любых направлениях. Будем исходить из того, что края шахматной доски достаточно высоки и не позволяют блохам выпрыгнуть наружу. Спустя некоторое время, в течение которого блохи прыгали повсюду, они распределятся почти равномерно по всем клеткам шахматной доски. Это конечное состояние, очевидно, менее упорядоченное, нежели исходное состояние, в котором, как мы знаем, все блохи были собраны на одной клетке. Можно пойти дальше и количественно оценить увеличение беспорядка между начальным и конечным состояниями, для этого необходимо подсчитать число возможных конфигураций «системы блох». В конечном состоянии каждая блоха может находится с равной вероятностью на любой из 64 клеток шахматной доски. Таким образом, число возможных (равновероятных) состояний для одной блохи равно 64. Если у нас есть две блохи (предполагаемые независимыми и различимыми), то число возможных конфигураций для такой системы из двух блох равно 64 x 64, т. е. 64^2. Для трех блох мы получим 64^3, и в общем случае можно заключить, что число возможных (равновероятных) конфигураций для системы из n блох будет равно 64n. Заметим, поскольку в начальном состоянии все блохи находились на одной определенной клетке, то в этом состоянии мы имели одну-единственную и четко заданную конфигурацию системы блох.
В целом, основной вывод, который следует из рассмотренного примера, состоит в следующем. Если мы позволяем определенному количеству, скажем n, блох занимать площадь, в 64 раза большую площади, на которой они находились изначально, то число возможных конфигураций для такой системы умножается на 64n. Если бы мы рассмотрели другое отношение площадей, скажем конечную площадь в 10 раз больше начальной, то число возможных конфигураций умножилось бы на 10n. И если бы мы рассмотрели не блох на шахматной доске, а, скажем, мух, исходно ограниченных небольшим объемом и затем выпущенных летать по всему объему комнаты, то число возможных конфигураций нужно было бы умножить на фактор rn, где r – отношение конечного объема к начальному, а n – количество мух. Существенным моментом для дальнейшего обсуждения является то, что число n независимых элементов (или «корпускул») рассматриваемой системы появляется в виде отношения объемов, доступных для системы в конечном и начальном состояниях.
Энтропия и беспорядок
В физике, если имеется система, для которой указаны лишь некоторые глобальные макроскопические характеристики, такие как ее полная энергия и объем, в котором она находится, энтропией называется логарифм числа возможных микроскопических конфигураций системы (также называемых «микроскопическими состояниями»). Напомним, что логарифм числа, по существу, определяется как количество цифр его десятичного представления, стоящих перед запятой, минус один {115} . Например, логарифм 10 равен 1, логарифм 100 равен 2, логарифм одного миллиона равен 6. Отметим также, что логарифм единицы равен нулю. Другими словами, логарифм L заданного числа N удовлетворяет условию: N = 10L. Понятие энтропии было введено в середине XIX в. Рудольфом Клаузиусом, когда он пытался лучше понять основополагающую работу Сади Карно. Клаузиус показал, как можно определить энтропию системы, исходя из знания ее термодинамических характеристик, и предложил в качестве аксиомы хорошо известный всем второй принцип термодинамики, согласно которому энтропия изолированной системы может только возрастать. [Напомним, что первый принцип термодинамики гласит, что энергия сохраняется.] Несколько лет спустя венский физик Людвиг Больцман понял, что второй закон термодинамики имеет под собой статистические основания {116} и что энтропия системы должна быть пропорциональна логарифму числа возможных микроскопических состояний {117} . Это позволило осознать второй закон термодинамики как простое выражение естественной тенденции изолированных систем стремиться к беспорядку. Примером может служить рассмотренная выше система блох, которая из начального «упорядоченного» состояния спонтанно развивается, последовательно занимая всевозможные доступные состояния, и, таким образом, большую часть времени находится в некотором обобщенном состоянии, утратив свой «первоначальный порядок».
115
На практике используется не логарифм с основанием 10, а «натуральный» логарифм с основанием e = 2,71828, т. е. N = eL.
116
Здесь мы несколько упрощаем историческое развитие связи между энтропией, статистикой, вероятностью и количеством микроскопических состояний. Для большей полноты необходимо отметить вклады Д. Максвелла, Макса Планка, Д. Гиббса и самого Эйнштейна. Фактически в 1905 г. немногие физики понимали и принимали связь между энтропией и вероятностью. Первые работы Эйнштейна, еще до 1905 г., были направлены на изучение этой связи и даже в отсутствие чего-либо революционного стали для Эйнштейна мощным интеллектуальным инструментарием в дальнейших исследованиях.
117
Фактически
Неизвестное уравнение E = hf
В 1905 г. Эйнштейн был одним из немногих физиков, понимавших глубокую связь между энтропией и числом микроскопических состояний {118} . Он знал, как, исходя из закона Вина для излучения внутри печи, рассчитать энтропию и затем количество возможных микроскопических состояний для излучения (с фиксированной частотой f), существующего в печи с заданным объемом. Отсюда он вывел коэффициент, на который умножалось число возможных микроскопических состояний излучения, когда доступный для системы объем увеличивался в r раз. Он обнаружил, что этот мультипликативный фактор числа состояний (или, другими словами, фактор «увеличения микроскопического беспорядка») имел тот вид, который мы получили выше в случае блох или мух, распространяющихся в большом объеме: он задавался определенной степенью отношения r, скажем rn. Эйнштейн делает из этого вывод, что показатель n, возникающий в мультипликативном факторе числа микроскопических состояний, может быть истолкован как «число независимых частиц света», присутствующих в излучении частоты f в печи. Такова была его главная аргументация, лежащая в основе революционной идеи о том, что свет, как бушель блох, обладает дискретной структурой и состоит из отдельных световых гранул, названных им «квантами света».
118
На самом деле Эйнштейн предпочитал мыслить с точки зрения вероятности и использовал различия энтропий для оценки отношений вероятностей.
Более того, его рассуждения позволили определить точное значение показателя n, т. е. количество независимых квантов света, присутствующих в излучении. Фактически он нашел, что число n определяется отношением полной энергии излучения (с частотой f) к выражению типа hf, где h – универсальная постоянная, а f – частота излучения. Эйнштейн пришел к выводу, что все происходит так, «как если бы» свет состоял из гранул и каждая гранула света имела бы энергию E, пропорциональную частоте света f – E = hf. Универсальная константа h имеет примерное значение 6,626 x 10– 27 г · см^2 · с– 1 и называется «постоянная Планка» {119} .
119
Обозначение h было введено Планком в 1900 г. Согласно небольшой, но интересной книге Жан-Клода Будено и Жиля Коэн-Таннуджи «Макс Планк и кванты» (Max Planck et les Quanta, de Jean-Claude Boudenot et Gilles Cohen-Tannoudji, Paris, Ellipses, 2001), Планк избрал букву h, подразумевая hilfe gr"osse, т. е. «вспомогательную переменную». Отметим также, что Эйнштейн не использовал обозначение h в своей статье 1905 г. (и на протяжении еще нескольких лет). Он считал (частично справедливо), что «вывод» закона излучения черного тела Планка, сделанный в 1900 г., был противоречивым, и предпочитал представлять свою аргументацию независимо от рассуждений Планка.
Уравнение E = hf, полученное Эйнштейном в марте 1905 г., имеет, возможно, даже более фундаментальное значение, чем уравнение E = mc^2, выведенное им в сентябре того же года. Тем не менее первое уравнение мало известно, тогда как второе знают все. Необходимо заметить прежде всего, что Макс Планк был первым, кто связал, еще в декабре 1900 г., частоту f излучения черного тела с количеством энергии E = hf. Тем не менее уравнение E = hf стало приобретать свой полноценный физический смысл лишь после выхода статей Эйнштейна в 1905 и 1906 гг. Именно по этой причине это уравнение часто называют уравнением Планка – Эйнштейна.
Вопреки обычному представлению, фигурирующему в основной массе научно-популярной литературы, Планк в 1900 г. никоим образом не утверждал, что энергия материи, образующей стенки печи (и тем более энергия света), должна быть физически «квантована» в единицах E = hf, т. е. может принимать лишь значения 0, hf, 2hf, 3hf, 4hf… Планк использовал E = hf, или то, что он назвал «элементами энергии», как вычислительный прием для придания смысла «количеству микроскопических состояний» материи печных стен. В общих чертах он использовал эти элементы энергии точно так же, как мы использовали в приведенном выше примере шахматную доску (с конечным числом клеток) для расчета количества возможных конфигураций блох, распределенных на некоторой площади. В конце концов, все, что имело значение в такой оценке, – это отношение между площадью, доступной в конечном состоянии, и начальной площадью. При этом сам размер элементарной клетки шахматной доски не входил в окончательный результат {120} . Однако Планк понимал, что результат его вычислений зависит от фактического размера «элементарной клетки», энергии E = hf, которую он использовал, хотя и надеялся на возможность в будущем придать вычислению некоторый смысл, оставаясь в рамках физических представлений своего времени, т. е. базируясь на представлениях об энергии вещества, принимающей всевозможные значения от нуля до бесконечности, и о свете, описываемом как непрерывная волна.
120
При условии, что начальный и конечный физические размеры доступных поверхностей остаются фиксированными. Например, если площадь исходной поверхности была один квадратный сантиметр, а площадь конечной – 64 квадратных сантиметра, то можно было бы использовать шахматную доску с клетками размером один квадратный миллиметр. Исходная поверхность состояла бы тогда из 100 элементарных клеток, а конечная поверхность – из 6400 клеток.
Эйнштейн был первым {121} , кто осознал связь между дискретностью физических величин (сейчас это называется квантовой дискретностью) и универсальной постоянной h. Если Планка можно считать первооткрывателем (в 1900 г.) новой универсальной физической константы (который понимал с самого начала, что это открытие было зарей новой эпохи физики), то Эйнштейн (в 1905–1907 гг.) стал инициатором создания физики явлений квантовой дискретности (который хорошо понимал, насколько «революционным» было это новое направление).
121
Как было отмечено Оливье Дарриголем (в его статье в сборнике «Эйнштейн сегодня», см. Избранную библиографию), Планк как объективный ученый в своей Нобелевской лекции в 1920 г. признает, что наука обязана Эйнштейну за осознание квантования энергии осциллятора как физической реальности (а не как формального введения размера «элементарных ячеек вероятности»).