Мир по Эйнштейну. От теории относительности до теории струн
Шрифт:
В конечном счете, это предсказание (в частности, сделанное самим Максвеллом) открывало возможность доказать реальность существования эфира и, таким образом, положить конец дискомфорту, связанному с ненаблюдаемостью ньютоновского абсолютного пространства и омрачавшему, как заметил проницательный Лейбниц, красоту его концепции. Много усилий было сделано в конце позапрошлого века, чтобы экспериментально обнаружить движение Земли по отношению к эфиру. В частности, одним из наиболее точных был эксперимент американского физика Альберта Майкельсона, реализованный в Потсдаме, недалеко от Берлина, в 1881 г. и повторенный с повышенной точностью в Соединенных Штатах в сотрудничестве с химиком Эдвардом Морли в 1887 г. Хотя точность измерения была вполне достаточной, чтобы обнаружить ожидаемый эффект изменения скорости света от комбинирования его движения с движением Земли, Майкельсон был сильно удивлен, не обнаружив никакого изменения! Этот совершенно неожиданный результат подтолкнул ведущих ученых того времени (в том числе ирландца Джорджа Фицджеральда, голландца Хендрика Лоренца и француза Анри Пуанкаре) к построению различных гипотез, направленных на объяснение ненаблюдаемости движения Земли относительно эфира. Это привело к публикации ряда научных работ, которые предвосхитили некоторые аспекты работы Эйнштейна, появившейся в июне 1905 г.
«Шаг»
В конце своей жизни в беседах с Абрахамом Пайсом – человеком, написавшим впоследствии наиболее полную биографию великого ученого – Эйнштейн в безличной форме ссылается на создание специальной теории относительности как на определенный «шаг» (от нем. den Schritt). Здесь подразумевается не только «шаг вперед», но и «продвижение по лестнице», подводящей к определенному порогу. Обратите внимание, что Эйнштейн не говорит о «скачке» {17} . Тем не менее он осознает, что создал в июне 1905 г. серьезный
17
Кроме того, интересно отметить, что в письме к своему другу Конраду Габихту, о котором мы упоминали выше, он характеризует как «революционную» лишь свою мартовскую статью 1905 г., посвященную квантовым свойствам света, и ограничивается следующими словами в отношении июньской статьи: «Там речь идет об электродинамике движущихся тел, построенной на основании модификации теории пространства и времени. Я уверен, что чисто кинематическая часть этой работы будет вам интересна».
18
В частности, Анри Пуанкаре и Эмиль Кон. См. подробное исследование историка науки Оливье Дарриголя «Электродинамические причины теории относительности» (Olivier Darrigol: «The electrodynamic origins of relativity theory», Historical Studies in the Physical Sciences, 26, 2, 1996).
19
Уиттекер Э. Т. История эфира и электричества (E. T. Whittaker, A History of Aether and Electricity, London, Nelson, 1953); Офрэй Ж.-П. Эйнштейн и Пуанкаре (Jean-Paul Auffray, Einstein et Poincar'e, 'Editions Le Pommier, 1999); Левегль Ж. Теория относительности, Пуанкаре и Эйнштейн, Планк, Гильберт (Jules Leveugle, La Relativit'e, Poincar'e et Einstein, Planck, Hilbert, Paris, L’Harmattan, 2004); Хладик Ж. Как молодой и амбициозный Эйнштейн присвоил специальную теорию относительности Пуанкаре (Jean Hladik, Comment le jeune et ambitieux Einstein s’est appropri'e la relativit'e restreinte de Poincar'e, Paris, Ellipses, 2004).
Существенным моментом является то, что Эйнштейн отвергает ньютоновскую концепцию «абсолютного пространства и времени», так же как и концепцию «эфира», традиционно отождествляемого с абсолютным пространством. Надо было обладать большой смелостью, чтобы отказаться от всех концептуальных основ, которые на протяжении веков были столь полезны для развития физики и которые стали так близки каждому, что казались полностью соответствующими всем интуитивным представлениям о пространстве и времени.
Каким же образом Эйнштейн сумел отказаться от ньютоновских концепций? Отверг ли их сходу и чем заменил? Абсолютно «относительными» понятиями времени и пространства в том смысле, который предлагал Лейбниц? Нет. В действительности, Эйнштейн продвигается очень постепенно. Он начинает с того, что признает существование «системы покоя», по отношению к которой обычные представления о пространстве в смысле привычной евклидовой геометрии и о времени в ньютоновском смысле являются действительными. Он предполагает, что в данной «системе покоя» законы динамики Ньютона действительны в первом приближении и свет {20} распространяется в ней со скоростью 300 000 км/с. Такая отправная точка была абсолютно приемлема, полностью согласована и допустима для любого физика того времени (требовалось лишь идентифицировать предложенную Эйнштейном «систему покоя» c эфиром). Эйнштейн просто уточняет, что для того, чтобы придать ясный наблюдательный смысл понятию «времени» в этой системе, необходимо (мысленно) снабдить часами каждую точку этой системы отсчета {21} . Он замечает, что часы определяют лишь время событий, происходящих как раз там, где они находятся. Затем он обращает внимание на необходимость «синхронизации» всех часов точно так же, как два человека синхронизируют свои часы, регулируя стрелки одних, пока они не покажут то же время, что и другие. Он предлагает осуществлять синхронизацию часов, находящихся на расстоянии, посредством обмена световыми сигналами между ними, принимая во внимание время, за которое свет преодолевает расстояние между двумя часами. Время рассчитывается путем деления расстояния между часами на скорость света, т. е. на 300 000 км/с. До этого момента ничего нового. Все физики были согласны с таким ходом рассуждения, который к тому же весьма напоминал метод синхронизации часов посредством использовавшегося повседневно в конце прошлого века телеграфного сообщения {22} .
20
Независимо от скорости своего источника.
21
Предполагается, что все часы, используемые Эйнштейном (в разных рассматриваемых системах отсчета), имеют «абсолютно одинаковую конструкцию», т. е. они такие, что, находясь рядом и в состоянии покоя относительно друг друга, «идут» с одинаковой частотой.
22
Использовать телеграфные сигналы для синхронизации часов предложил французский физик и производитель часов Луи Бреге в 1857 г. Блестящее исследование на тему технологий синхронизации часов во времена Пуанкаре и Эйнштейна можно найти в книге Питера Галисона «Часы Эйнштейна, карты Пуанкаре, империи времени» (Peter Galison, Einstein’s Clocks, Poincar'e’s Maps, Empires of Time, New York, Norton, 2003). Однако я думаю, что знание этой подоплеки так же несущественно, как знание о том, что яблоки падают, было несущественно во времена Ньютона! Гений Ньютона заключался в умении сделать вывод о наличии гравитации исходя из наблюдения за падением яблока. Точно так же гений Эйнштейна заключался в способности серьезно пересмотреть концепцию времени на примере проблем, связанных с синхронизацией движущихся часов. Как уже говорилось в тексте, по поводу той же проблемы Пуанкаре продолжал думать в рамках концепции ньютоновского абсолютного времени.
Существенная новизна эйнштейновского подхода появляется позднее, когда он допускает наличие строгого ограничения – принципа относительности – для всех законов физики. Он понимает этот принцип в духе приведенной выше цитаты из Галилея: невозможность выявления какой-либо разницы в поведении локальных явлений, рассматриваемых в «системе покоя» либо в системе отсчета, находящейся в равномерном движении по отношению к системе покоя. Как уже говорилось, один из законов физики в покоящейся системе отсчета требует, чтобы свет распространялся с постоянной скоростью (300 000 км/с) независимо от направления своего распространения и скорости перемещения источника. Тогда в качестве первого следствия принципа относительности появляется требование, чтобы свет распространялся также с фиксированной скоростью 300 000 км/с в произвольной системе отсчета, перемещающейся равномерно по отношению к системе покоя.
Дойдя до этого этапа рассуждений Эйнштейна, все физики его времени должны были возразить: «Это абсурд! Согласно хорошо известному закону сложения скоростей, скорость света в движущейся системе отсчета должна быть суммой его скорости в системе покоя и скорости движения движущейся системы как целого. И эта сумма никогда не может быть равна 300 000 км/с». Но тогда, объясняет Эйнштейн, по сути {23} «хорошо известный закон сложения скоростей» является на самом деле лишь следствием молчаливого предположения о поведении законов и часов, находящихся в движении. Таким образом, эти предположения a priori не являются достоверными. Вспомним приведенный выше пример бабочки в трюме корабля. Если внимательно, шаг за шагом, разобрать этот пример, где корабль продвигается на «1 м/с», тогда как бабочка продвигается на «2 м/с», то мы увидим, что нужно сделать три независимых предположения для вычисления скорости бабочки по отношению к причалу. Для начала необходимо предположить, что расстояние в два метра, преодолеваемое бабочкой в трюме, эквивалентно
23
Мы допускаем некоторую вольность, описывая содержание статьи Эйнштейна, уважая тем не менее логический порядок, которому он следовал.
Расшатав, таким образом, многовековые представления о пространстве и времени, Эйнштейн показывает далее, как сконструировать новые представления. Для этой цели он использует те мощные средства, которые вытекают из самого принципа относительности. Требуя точного выполнения этого принципа, он заключает, каким образом должен восприниматься эталонный метр в движении для неподвижного наблюдателя, с какой кажущейся частотой отсчитывают секунды движущиеся часы по сравнению с часами в покое и как изменяется понятие одновременности для двух систем, находящихся в относительном движении. В результате он получает ряд математических формул, связывающих координаты пространства и времени одного и того же события (длину, ширину, высоту и датировку) согласно восприятию в системе покоя и в системе, находящейся в равномерном движении {24} . Возможно, Эйнштейн не знал, что эти математические формулы были написаны до него, в частности Лоренцом, и что они были детально изучены Пуанкаре {25} . Едва ли это важно. Существенным моментом является то, что у Эйнштейна уравнения приобрели совершенно новый физический смысл. Действительно, никто из современников Эйнштейна не ставил под сомнение понятие ньютоновского абсолютного пространства-времени. Для них среди различных переменных, входящих в эти уравнения, лишь длина, ширина, высота и время в системе покоя, связанной с абсолютным пространством (и эфиром), представляли настоящие координаты пространства и времени. Другие переменные были либо кажущимися координатами, либо просто вспомогательными величинами. Позднее мы вернемся к этому важному различию между Эйнштейном и его оппонентами.
24
Вот несколько указаний для пытливого читателя, который захочет самостоятельно вывести уравнения, связывающие координаты (x, y, z, t) в «системе покоя» c координатами (x’, y’, z’, t’) в системе, «перемещающейся со скоростью v вдоль оси x». Ниже буква c обозначает скорость света. Из соображений единообразия и симметрии можно понять, что искомые уравнения имеют вид: t’ = at - bx, x’ = A (x - vt), y’ = By, z’ = Bz, где коэффициенты a, b, A, B есть функции v и c, которые необходимо определить. Заметим, что луч света, распространяющийся со скоростью c в системе покоя, т. е. такой, что x^2 + y^2 + z^2 - c^2t^2 = 0, распространяется также со скоростью c в движущейся системе отсчета: x’^2 + y’^2 + z’^2 - c^2t’^2 = 0. Наложим требование симметрии по отношению к отражениям и перестановке двух систем (так что, например, B (v) = B (-v) = 1/B (v)). Получив таким образом выражения для коэффициентов a, b, A, B, убедитесь, что комбинация s^2 = x^2 + y^2 + z^2 - c^2t^2 инвариантна при переходе из одной системы отсчета в другую (даже если она не равна нулю).
25
Речь идет о так называемых уравнениях «преобразований Лоренца» (термин, введенный Пуанкаре). Впервые они были написаны (с точностью до общего множителя) немцем Вольдемаром Фойгтом в 1887 г., затем (в приближенной форме) голландцем Лоренцом в 1895 г., после чего в точном виде их нашел англичанин Джозеф Лармор в 1900 г., и, наконец, они были переоткрыты в точной форме Лоренцом (который не знал работ Фойгта и Лармора) в 1904 г. Некоторые свойства этих уравнений были подробно изучены А. Пуанкаре в июне 1905 г. Пуанкаре знал лишь работы Лоренца 1895 и 1904 гг. и поэтому ввел термин «преобразования Лоренца». Что касается Эйнштейна, то он знал лишь работу Лоренца 1985 г., где эти уравнения отсутствовали в точной форме. Независимо от физической интерпретации уравнений (интерпретация Эйнштейна полностью отличалась от интерпретации его предшественников), Эйнштейн был первым, кто вывел эти уравнения чисто кинематическим путем, т. е. на основе фундаментального пересмотра понятий пространства и времени.
После получения уравнений, связывающих пространственно-временные координаты одного и того же события в двух разных системах отсчета, Эйнштейн обсуждает их физическую интерпретацию, а затем выводит модифицированную форму закона сложения скоростей в своей новой теории. Наконец, он убеждается, что в новом законе «добавление» произвольной скорости, «не превышающей пороговой», к скорости света по-прежнему дает скорость, равную (по абсолютной величине) скорости света. Таким образом, круг замыкается: Эйнштейн демонстрирует совместимость принципа относительности и того принципа, в соответствии с которым свет всегда распространяется с одинаковой скоростью. Кроме того, все это теоретическое рассуждение (так же, как и остальная часть статьи) делает абсолютно «излишним» введение понятий «световой эфир» и «абсолютное пространство». Эйнштейн больше к этому не возвращается, однако такое простое замечание подписывает смертный приговор понятиям, считавшимися «очевидными» всеми его современниками.
На этом мы завершаем обзор первой части июньской статьи Эйнштейна 1905 г., которую он определяет для себя как «кинематическую», т. е. направленную на исследование свойств пространства, времени и движения. Во второй части, имеющей название «Раздел электродинамики», он показывает, как применение его нового подхода изучения свойств пространства и времени к уравнениям электромагнетизма Максвелла позволяет свести все проблемы электромагнетизма и оптики, связанные с исследованием тел в движении, к серии проблем с неподвижными телами. Попутно он получает ряд важных новых результатов. В заключение было показано, что принцип относительности требует изменения основного закона динамики Ньютона (связывающего силу, действующую на тело, с его массой и ускорением). В частности, Эйнштейн выводит, что обычное выражение кинетической энергии движущегося тела, т. е. энергии, связанной со скоростью движения тела, необходимо модифицировать, когда тело движется с большой скоростью. Он устанавливает, что кинетическая энергия возрастает до бесконечности, по мере того как скорость тела приближается к скорости света. Это позволяет сделать вывод, что скорость света является предельной и недостижимой. Эйнштейн, наконец, нашел ответ на вопрос, который не давал ему покоя с 16 лет! Ни один наблюдатель не может поймать луч света. Скорость наблюдателя обязательно меньше скорости света. И даже если его скорость очень близка к скорости света, то он будет видеть свет убегающим от него с неизменной скоростью 300 000 км/с. Бесполезное занятие – бежать за светом.
Расстроенное время
Вернемся к существу концептуального нововведения теории относительности, сформулированной Эйнштейном весной 1905 г. Как Эйнштейн сказал Бессо, встретив его на следующий день после их решающего обсуждения: «Спасибо. Я полностью разрешил проблему. Разгадка была в анализе концепции времени. Время не может быть определено универсальным способом, поскольку существует неразрывная связь между временем и скоростью распространения сигналов».