Мир по Эйнштейну. От теории относительности до теории струн
Шрифт:
Именно новое понимание концепции времени, предложенное Эйнштейном, отличает его вклад от всего, сделанного другими учеными (в том числе Лоренцом и Пуанкаре) в области электродинамики движущихся тел. Для Лоренца и Пуанкаре существовало лишь одно «действительное время» – абсолютное время Ньютона, с которым они были знакомы всегда. Другие переменные, напоминающие время, но связанные с движущейся системой отсчета, оставались лишь вспомогательными математическими приемами. Это подтверждается тем, что пишет Эйнштейн в 1907 г.:
«Но, что удивительно, оказалось, чтобы преодолеть описанную трудность, нужно было лишь осознать концепцию времени с большей степенью ясности. Было достаточно осознать, что вспомогательная величина, введенная Лоренцом и которую он назвал “местным временем”, могла быть определена как самое натуральное, обычное “время”», а также тем, что писал сам Лоренц в 1915 г.:
«Основной причиной моей неудачи [в открытии теории относительности] было то, что я цеплялся за мысль, что только переменная t может рассматриваться как истинное время и что мое локальное время t’ может рассматриваться лишь как вспомогательная математическая величина».
Что касается Пуанкаре, здесь ситуация более тонкая, поскольку он первым понял, еще в 1900 г., что «локальное время» Лоренца t’ является чем-то большим, нежели удобная вспомогательная величина. Пуанкаре действительно
26
А. Пуанкаре, доклад на Международном конгрессе науки и искусств (Сент-Луис, Миссури, США, 24 сентября, 1904); был опубликован в конце 1904 г. и воспроизведен в замечательной научно-популярной книге Пуанкаре «Ценность науки» (H. Poincar'e, La Valeur de la science, Flammarion, 1905). По всей вероятности, Эйнштейн не читал этот доклад Пуанкаре, который между тем предвосхищал многие аспекты теории относительности.
«Поэтому, часы, настроенные таким образом, не будут показывать реальное время, они будут показывать то, что можно назвать локальным временем, и, как следствие, одни из них будут отставать от других. Что несущественно, поскольку у нас не будет никакой возможности это определить. Например, все явления, происходящие в точке A, будут отставать, но все в одинаковой степени, и наблюдатель не заметит этого, поскольку его часы запаздывают; таким образом, согласно принципу относительности, у наблюдателя не будет возможности определить, находится ли он в состоянии покоя или в абсолютном движении».
Эта цитата ясно показывает, что для Пуанкаре такой способ синхронизации практически (и действительно имевший практическое применение в то время) {27} определял лишь некоторое приближение «реального времени» (универсального абсолютного времени Ньютона), поскольку допускал независимость от направления продолжительности передачи сигналов, что не могло быть правдой для наблюдателя в «абсолютном движении». Как пишет A. Пуанкаре в отрывке, предшествующем приведенной цитате: «В противном случае [т. е. когда наблюдатели A и B не «зафиксированы»] время передачи не будет тем же в обоих направлениях, поскольку, например, станция A движется в направлении оптического возмущения, исходящего из B, тогда как станция B удаляется от возмущения, исходящего из A». Слова, которые использует Пуанкаре: «истинное время», «отставание», «абсолютное движение» «фиксированный» и т. д., явно свидетельствуют о том, что его мысль движется внутри горизонта ньютоновских концепций – абсолютного времени, абсолютного пространства, абсолютного движения.
27
Галисон П. (P. Galison, op cit.).
Важным следствием ограничения концептуального горизонта Пуанкаре является то, что «местное время», о котором он говорит в 1904 г. в процитированном выше тексте, отличается существенным образом от «времени», которое Эйнштейн связывает с движущейся системой отсчета. Действительно, внимательное чтение текста Пуанкаре 1904 г., его лекций {28} на Парижском факультете наук зимой 1906–1907 гг., а также статьи {29} , опубликованной в 1908 г., показывает, что «время», о котором он говорит, – назовем его – есть всегда время, секунды которого измеряются часами в «абсолютном покое». Таким образом, хотя Пуанкаре предвосхищает Эйнштейна, говоря о синхронизации посредством обмена световыми сигналами, «время Пуанкаре», , больше «времени Эйнштейна», назовем его t’, на фактор k, который зависит от «абсолютной» скорости наблюдателей A и B {30} .
28
Эти лекции 1906–1907 гг. были опубликованы в 1953 г. в «Астрономическом бюллетене» («Les limites de la loi de Newton», Bulletin astronomique, t. XVII, Fasc. 2, р. 121–269).
29
Пуанкаре А. Динамика электрона (H. Poincar'e, «La dynamique de l’'electron», Revue g'en'erale des sciences pures et appliqu'ees, t. 19, р. 386–402, 1908).
30
В уравнениях = kt’ = t - k^2v (x - vt)/c^2, где k = l / (l - ^2 / c^2). Здесь t и x – координаты в системе покоя, c – скорость света, – временная переменная наблюдателей A и B согласно определению Пуанкаре, а t’ – временная переменная в движущейся системе с A и B согласно определению Эйнштейна.
Читатель, без сомнения, может задуматься, в чем причина такой важности численного фактора k! (Тем более, что в более поздних работах Пуанкаре фактически использует не время , определенное им в приведенном выше тексте, а время t’ = / k, предложенное Эйнштейном (и немного ранее Лоренцом)). Причина в том, что численный фактор k имеет решающее значение, поскольку представляет суть огромного концептуального различия между образом мысли Пуанкаре (и Лоренца) и восприятием Эйнштейна. Действительно, в своей статье в июне 1905 г. Эйнштейн вывел замечательное наблюдаемое следствие наличия этого фактора: часы, находящиеся в движении, идут в «ритме», отличном от часов, которые находятся в покое. Точнее, часы, движущиеся со скоростью v по отношению к некоторой системе отсчета и рассматриваемые в этой системе после устранения эффектов запаздывания, связанных с передачей электромагнитных сигналов, имеют более
31
Заметим, когда Пуанкаре говорит о часах движущегося наблюдателя, «отстающих от других», он подразумевает фиксированное временное расхождение между двумя движущимися часами, связанное с линейным членом x - vt в синхронизированном «локальном времени», которое он определяет как = t - k^2v (x - vt)/c^2. В приведенной формуле, неявно использованной Пуанкаре, разность между двумя последовательными «локальными временами» равна разности между двумя соответствующими абсолютными датами, = t. Пуанкаре никогда не говорит о «накопившемся отставании» движущихся часов, которые возвращаются в исходную точку. Это накопившееся отставание целиком обусловлено дополнительным фактором k = l / (l - ^2 / c^2) во времени t’, о котором говорит Эйнштейн и которое связано с временем Пуанкаре как kt’ = = t - k^2v (x - vt)/c^2.
Здесь мы подходим к самой сути концептуальной новизны теории относительности Эйнштейна: ниспровержение общего для всей Вселенной абсолютного времени Ньютона и его замена множеством независимых времен, различающихся между собой. Этот серьезный дисбаланс времени иллюстрируется так называемым парадоксом близнецов (рис. 1). В своей исходной версии этот парадокс был сформулирован Эйнштейном на конференции в Цюрихе в январе 1911 г. Он предложил представить, что некий живой организм помещается в контейнер, которому затем сообщается скорость, близкая к скорости света. (Заметим, что отношение k между «временем на Земле» и «временем в движущемся контейнере» стремится к бесконечности по мере того, как скорость контейнера приближается к скорости света.) После того как контейнер преодолевает значительное расстояние, скажем пять световых лет, он возвращается в исходную точку опять же со скоростью, близкой к скорости света. Открыв контейнер после его возвращения, мы обнаружим, что «путешествовавший» организм почти не изменился, тогда как аналогичные организмы, оставшиеся на Земле, постарели лет на 10 (или в случае более далекого путешествия или ограниченной продолжительности жизни данного организма «давно сменились бы новыми поколениями»).
Французский физик Поль Ланжевен придал этому рассуждению большую наглядность, предложив представить, что путешествующим организмом является человек, запущенный в пушечном ядре, подобно героям Жюль Верна. После возвращения путешественник, словно Рип Ван Винкль {32} , обнаружит, что его современники превратились в стариков. В более современном описании данного парадокса вместо пушечного ядра обычно используются космическая ракета и пара близнецов, один из которых совершает путешествие и после возвращения обнаруживает, что оставшийся брат стал гораздо старше него. Заметим, когда мы говорим здесь о старении или продолжительности жизни, то имеем в виду «обыкновенное время», которое организм проживает и которое измеряется, например, количеством биений сердца или интервалами, необходимыми, чтобы сварить яйцо.
32
Герой романа Вашингтона Ирвинга (1819), который, вернувшись в мир после пробуждения, с удивлением обнаружил, как много лет прошло для других, но не для него.
Рефрижератор времени
Независимо от того, какую версию парадокса близнецов мы выбираем, эффект замедления времени, связанный с фактором k, становится ощутимым, только когда путешественник передвигается со скоростью, сравнимой со скоростью света, т. е. 300 000 км/с, что значительно превосходит все привычные нам скорости. Таким образом, поскольку парадокс близнецов возникает лишь в ситуациях, весьма удаленных от нашего повседневного опыта, кажется, что он не может повлиять на наше интуитивное восприятие времени, которое складывалось веками. Тем не менее мы можем усилить психологическое и экзистенциальное влияние этого парадокса, следуя примеру, предложенному русским физиком Г. Гамовым в его превосходных научно-популярных книгах {33} . Представим, что мы живем в мире, который отличается от нашего лишь тем, что скорость света в нем намного ниже. Например, представим, что скорость света составляет лишь 30 км/ч. В подобной вселенной внешний край детской карусели мог бы достигать скорости, весьма близкой к скорости света. Такая карусель представляла бы собой своего рода временной холодильник, который замораживает течение времени для людей, находящихся на платформе, по отношению к течению времени для внешних наблюдателей. Так, если мать двух близнецов посадит одного из них на деревянную лошадку и забудет там на год (!), то, вернувшись, она обнаружит его почти не изменившимся, тогда как его брат-близнец (и мать), оставшийся на земле станет старше на один год. Заметим, что такой временной холодильник не позволяет «жить дольше», т. е. не позволяет увеличить количество биений сердца, по сравнению с тем, что было бы на твердой земле. Полная длительность времени, прожитая движущимся близнецом и измеренная числом сердечных сокращений, будет той же (если пренебречь биологическим влиянием центробежного ускорения), что и для неподвижного близнеца. Эффект карусели позволяет лишь, как это делает криогенная консервация, вернуться в мир и обнаружить, что другие прожили определенное количество лет, которых у вас не было.
33
Речь идет о его популярных книгах, построенных вокруг персонажа – мистера Томпкинса.