Мир вокруг нас
Шрифт:
Атомы металлов, имея низкую электроотрицательность, легко отдают (наружные, s) электроны, с образованием молекулярной орбитали, электронная плотность которой распределена (делокализована) между всеми атомами в монокристалле (а монокристалл — может включать почти неограниченное число атомов).
Неметаллы же, имея высокую электроотрицательность, в нормальных условиях — либо вообще не отдают электроны друг другу (благородные газы), т. е. не образуют молекул, либо отдают их лишь соседним атомам (галогены, образующие мелкие, двухатомные молекулы (F2, и т. п.), как впрочем и некоторые другие неметаллы (O2, и т. п.)), либо (ещё левее, постепенно приближаясь к металлам), образуют цепочки и другие пространственные структуры (S8, Se8, Cn
Таблица 65 [49] , [50]
Таблица Менделеева (слева — металлы (выделены серым), кроме водорода (H), справа — неметаллы, их отграничивают — металлоиды (выделены светло-серым); свойства отмеченных курсивом, элементов, т. е. 109–111, 113 и 115–118 — не установлены)
Итак, атомы металлов и неметаллов — различаются химическими свойствами, т. к. образуют различающиеся (по размерам и структуре) молекулы. Таким образом, по химическим свойствам (= определяющим образование более высокого уровня вещества — молекул), все атомы можно разделить на три блока: металлы, неметаллы, и занимающие промежуточное положение между ними, металлоиды (= полуметаллы и полупроводники), такие как Si, и т. п. (см. табл. 65). Таблица Менделеева, как видно, организована так, чтобы группировать атомы со схожими химическими свойствами (т. е. отражать закономерную повторяемость химических свойств атомов, при увеличении их массы), при этом, получаются три вышеупомянутых блока, а также вертикальные и горизонтальные ряды, понятные из представлений о порядке заполнения электронных подоболочек (и оболочек) атомов.
Далее: Из представления об электроотрицательности — выясняется и суть такого вида химической связи как ионная:
Ионная связь — реализуется, когда объединяются атомы с сильно (больше чем (примерно) на 1,7) различающейся электроотрицательностью, например, атомы элементов натрия и хлора (см. рис. 228). В молекуле NaСl, электронная плотность связующих электронов, оказывается очень сильно смещена в сторону атома Cl (где электрон занимает вакансию в p-подоболочке). Атом Cl, принимая эту, дополнительную электронную плотность, обретает т. о. значительный, частичный отрицательный заряд, а атом Na, у которого электронная плотность отнимается — соответствующий положительный. Т. о. атомы в молекуле NaCl, приближаются к состоянию двух связанных ионов, Na+ и Cl–.
В молекуле NaCl, атом Cl достроил электронную p-подоболочку, за счёт электрона атома Na (при этом, из-за неизменного расстояния от ядра, и роста заряда, заполнение вакансии для p-электрона в атоме Cl очень выгодно). Традиционно также представляют (учитывая частично ковалентный характер любой ионной связи), что и Na — достроил свою, s-подоболочку, за счёт электрона атома Cl (учёт этого важен, но в меньшей степени). В целом, хотя суммарная электронная плотность в молекуле NaCl сильно смещена к атому Cl, представляется, что в образовании связи, в этом (одном из типичных) случае, принимают участие два (т. н. валентных) электрона, образующих общую орбиталь, и т. о. связь, для атомов — взаимовыгодна, см. рис. 230.
Рис. 230
Молекулы с ионной связью (NaCl, и т. п.) — могут объединяться и далее, с образованием более крупной молекулы, т. н. ионного кристалла, в котором, в отличие от монокристалла металла, электроны делокализованы лишь между соседними атомами (например, между ионом Cl–, и шестью ионами Na+, окружающими его, см. рис. 231). Хотя делокализация и локальна, ионный кристалл представляет собой единое целое (молекулу), т. к. в нём нельзя выделить индивидуальных молекул (каждый ион взаимодействует с соседними ионами, а соседние ионы — со своими соседями).
Рис. 231 [XXII].
Различие в структуре — приводит к тому, что молекулы-ионные кристаллы, в отличие от молекул-монокристаллов металлов — растворимы в полярных растворителях (например, воде), не проводят электрический ток, и т. д. отличаются физическими и (в виде самой внутренней структуры) химическими свойствами.
Далее: В отличие от ионной связи, при ковалентном полярном виде связи, электронная плотность в молекуле смещена не столь резко (различие электроотрицательности у связываемых элементов — менее примерного числа 1,7, но более такого же примерного значения 0,3). Ковалентные полярные молекулы, объединяясь друг с другом, образуют уже т. н. молекулярные кристаллы, т. е. кристаллы, очевидно состоящие из молекул, как относительно самостоятельных частей (структурных единиц). Молекулярные кристаллы — это уже один из примеров более высокого уровня вещества, расположенного выше уровня молекул, а именно — простых молекулярных тел (подробнее о которых — позже).
Далее: При следующем виде химической связи, ковалентной неполярной связи, объединяются атомы с одинаковой (или слабо отличающейся, менее чем на 0,3) электроотрицательностью, так что электронная плотность в молекуле смещается в середину расстояния между атомами (примеры: N2, Cl2 и т. п.), либо делокализуется между несколькими атомами в т. н. ароматических (и некоторых др.) соединениях (см. пример на рис. 232). Крайним проявлением ковалентной неполярной связи, может считаться металлическая связь, — обладающая неограниченной делокализацией электронов.
Рис. 232 [XXIII]. Молекула бензола
Молекулы ковалентных неполярных соединений, соединяясь друг с другом в кристаллы, также сохраняют относительную самостоятельность (не сливаются в единую молекулу), и т. о. образуют молекулярные кристаллы, в которых молекулы связаны относительно слабо (по сравнению с атомами), поэтому молекулярные кристаллы, в отличие от металлических и ионных (= состоящих напрямую из атомов) — легко плавятся, имеют низкую плотность, и т. п., а многие вещества из молекул с ковалентными неполярными связями, при т. н. нормальных условиях — находятся не в твёрдом, а в жидком (Br2) или газообразном состоянии (H2, N2 и т. п.).
Итак, мы рассмотрели основу различных видов (сильных) химических связей. Как видно, различие всех этих видов связей (и образующихся молекул) — происходит из различий в значениях электроотрицательности связываемых атомов, что определяет степень (и направление) смещения электронной плотности в молекулах.
Далее: Рассмотрим, подробнее, вопрос о разнообразии молекул в окружающем Мире:
Помимо разнообразия, связанного с видами химической связи (т. е. молекулы металлов (монокристаллы), ионные кристаллы, двухатомные неполярные молекулы, ароматические и т. п.), для понимания всего имеющегося (и возможного) разнообразия молекул, нужно учесть и более частные источники разнообразия, в т. ч. то, что между собой могут соединяться атомы различных, 118-и элементов таблицы Менделеева (где каждый элемент — химически уникален). Т. о. схожие по структуре, молекулы, но имеющие атомы разных элементов в составе — химически (и физически) различимы, пример: H2O (вода) и H2S (газ сероводород). Кроме того, атомы могут соединяться друг с другом в разном порядке, и разном числе, и с выбором одной из множества возможных геометрических конфигураций. Если учесть эти, относительно частные, вышеперечисленные источники разнообразия молекул, и их сочетания, видно, что разнообразие молекул в окружающем Мире — может быть практически безграничным.