Мир вокруг нас
Шрифт:
Заглянув внутрь звёзд, можно обнаружить слоистое строение, как и в случае планет, но благодаря более высоким, чем у планет, давлению и температуре (= концентрации энергии), уровни вещества в звёздах — деградируют до ещё более низких уровней, чем в планетах. Например, существование атомов (а у самых лёгких и холодных звёзд, т. н. коричневых карликов — и молекул) — возможно лишь в наиболее разрежённых, периферийных слоях, — т. н. атмосфере звезды (где атомы или молекулы, хотя и в возбуждённом состоянии, но могут существовать). Но стоит опуститься ближе к «поверхности» — как происходит ионизация, т. е. разрушение атомов до более низких уровней вещества, с образованием плазмы, состоящей из отдельных атомных ядер и электронов, составляющей значительную долю объёма любой (типичной) звезды. (По уровню вещества, плазма — находится
В центральной области звезды — располагается ядро, в котором (или на периферии которого) — протекают термоядерные реакции. Рассмотрим их подробнее:
Суть термоядерных реакций
Термоядерные реакции, или реакции слияния ядер — протекают только при достаточно высоких температурах, недостижимых в недрах планет (отсюда — и название этих реакций: термоядерные). Высокая температура — необходима для того, чтобы придать ядрам (или протонам) достаточно большие импульсы, необходимые для преодоления электромагнитного отталкивания протонов (ядер) друг от друга, т. е. сближения до расстояний, где вступают в силу короткодействующие взаимодействия — мезонные и слабые (дающие разные типы реакций).
Самые неприхотливые к температуре, термоядерные реакции — это реакции т. н. горения дейтерия, = реакции слияния ядра дейтерия с протоном, а также двух ядер дейтерия друг с другом, и т. п., эффективно протекающие при 1 000 000 K [54]. Температура 106 K — достижима уже на начальных этапах эволюции звёзд (формирующихся при сжатии участков межзвёздного газового / газо-пылевого облака).
Горение дейтерия — также практически единственная термоядерная реакция, возможная в недрах наиболее маломассивных звёзд — коричневых карликов. Это — главный источник термоядерной энергии в этих звёздах, который относительно быстро (не более чем за сто миллионов лет [55]) истощается. А т. к. реакции, требующие более высоких температур, в недрах данных звёзд невозможны (из-за малой массы звезды, а значит, недостаточной температуры в недрах) или непродолжительны, коричневые карлики, далее — остывают, при этом, со временем всё больше напоминая планеты, см. табл. 66.
Таблица 66 [56]
Сравнительная характеристика планет, коричневых карликов и более массивных, т. н. красных карликов, по отношению к термоядерному горению водорода и дейтерия
Часть коричневых карликов (с массами 0,065–0,075 Солнечной), а также обычные (по массе) звёзды (в т. ч. Солнце (= т. н. жёлтый карлик)), и более массивные звёзды — сжигают запас ядер дейтерия на самой заре своего существования (за миллионы лет [57]), но затем, после дальнейшего сжатия и ещё большего гравитационного разогрева недр — переходят к реакциям, более требовательным к температуре — т. н. горению водорода (о чём, подробнее — чуть позже).
В целом, реакции горения дейтерия, как уже было сказано — основной источник (термоядерной) энергии (и части излучения, вторая часть — за счёт гравитационного сжатия) лишь для маломассивных коричневых карликов. Основная реакция горения дейтерия (определённая, исходя из теоретических и экспериментальных данных) — это слияние ядра дейтерия и протона, с образованием ядра гелия-3 и гамма-кванта [58]. На постнеклассическом этапе, исходные и конечные ядра в этой реакции, в т. ч. выгоду образования конечного ядра, можно представить в наглядном виде (как уже, в целом, рассматривалось ранее).
Горение дейтерия в коричневых карликах, как уже отмечалось — может быть относительно непродолжительным (до ста миллионов лет), т. к. запасы дейтерия — ограничены (его содержание в звезде — такое же, как и в межзвёздной газовой или газо-пылевой туманности, т. е. не более порядка 10–5 от ядер водорода [59]). В коричневых карликах с массой более 0,065 массы Солнца, и более массивных звёздах, после истощения запасов ядер дейтерия, наступает дальнейшее гравитационное сжатие звезды, которое приводит к
Горение водорода, в звёздах с массой от 0,065 до около 1,5 масс Солнца [60] — начинается (преимущественно) с реакции, обусловленной слабыми, а не мезонными взаимодействиями. В связи с этим, далее может быть рассмотрена:
Геометрия электрослабых взаимодействий
Реакция слабого взаимодействия между двумя протонами, приводящая к превращению одного из протонов в нейтрон — необходимая исходная реакция для горения водорода. Действительно, в звезде, как и в межзвёздной среде — практически нет нейтронов, т. к. нейтроны нестабильны (в среднем за 15 минут, распадаются в протоны). Для образования же ядер, т. е. в т. ч. скрепления протонов между собой — необходимы нейтроны, поэтому они должны вновь образоваться, в чём и заключается роль реакции слабого взаимодействия, превращающей протон в нейтрон, или два протона в ядро дейтерия, с вылетом W+ (= электрослабого) бозона.
Эта реакция, как и другие термоядерные реакции, требует высокой температуры, для преодоления взаимного отталкивания протонов, причём тут необходимы гораздо большие температуры, чем при горении дейтерия, т. к. кроме преодоления взаимного отталкивания, протоны должны вступить в слабое взаимодействие, с превращением протона в нейтрон, вероятность чего — крайне мала.
Попробуем представить реакцию слабого взаимодействия (ведущую к превращению протона в нейтрон), в наглядном виде: Первый этап этой реакции — см. на рис. 235-а. В реакции на рис., результатом является образование т. н. дипротона. Мезонное взаимодействие между протонами, тут — можно считать отсутствующим (т. к. нет нейтронов). Дипротон (как впрочем, и аналогичный ему, динейтрон), как известно, крайне нестабилен (и имеет отрицательную E связи на нуклон).
В подавляющем большинстве случаев, образовавшийся дипротон, далее — мгновенно или почти мгновенно, распадается на свободные протоны, и лишь с очень малой вероятностью, вместо этого — слабое взаимодействие приводит к превращению одного из протонов в нейтрон, см. рис. 235-б. Но какова вероятная геометрия кванта электрослабого взаимодействия, W+ бозона, в этой реакции? И почему эта реакция вообще возможна? Ответы на эти вопросы — поищем в наглядной геометрии: Выгоду реакции в целом — можно представить, исходя из (геометрической) выгоды образующегося ядра дейтерия (как уже рассматривалось ранее). Учтём, далее, не только верхние, но и «нижние» части протонов, как показано на рис. 236. Видно, что реакция превращения протона в нейтрон — не требует физического перемещения протона в верхнюю часть ядра, а производит только (вертикальный) сдвиг протона (что для элементарной частицы, как (нелинейной) волны — может интерпретироваться, как фазовый сдвиг волны), при этом происходит «сжатие» протона до нейтрона, в соответствии с выгодой геометрии образуемого ядра дейтерия (рис. 236).
Рис. 235
Рис. 236. Слева — протон спина –1/2 в дипротоне, с учётом «нижней» (в данном случае — расположена сверху), части; второй протон (т. е. со спином +1/2) — убран (т. о. можно видеть, что эпицентры кварков — располагаются в месте соприкосновения двух половин частицы, на вершинах правильных пирамид (одна из пирамид — для удобства, изъята)); в скобках — то же, вид сверху-сбоку; правее — нейтрон спина +1/2, в ядре дейтерия (нижняя часть (половина) нейтрона — находится ниже плоскости, и не показана), протон (спина +1/2) — для удобства, убран; в скобках — то же, вид сверху-сбоку / ядро дейтерия