Моделирование с помощью НЛП
Шрифт:
Обычной стратегией обучения для таких сетей является «обратное распространение». Предположим, компьютер обучают распознаванию букв алфавита, чтобы он смог читать напечатанные документы и переводить их в соответствующие электронные текстовые символы (рис. 34). Для того чтобы научиться распознавать, скажем, букву 5, следует ввести образ этой буквы в сеть.
Рис. 34. Схема процесса «обратного распространения» в нервной сети
Этот
Подобная стратегия используется в НЛП для совершенствования той или иной модели, созданной с помощью разнообразных методов и стратегий (описанных выше). Человек представляет собой сложную «нервную сеть», которая способна обрабатывать различные свойства и особенности (т. е. репрезентативные системы, субмодальности, паттерны метапрограммы, микроповеденческие ключи, языковые паттерны и т. д.). Сосредоточение «внимания» на определенной особенности подобна процессу наделения «весом» того или иного элемента компьютерной нервной сети. Например, если сказать человеку «подними глаза вверх и влево», в то время как он пытается научиться правильно писать какое-то слово, то тем самым мы придадим больше «веса» положению глаз как элементу грамотного письма.
Таким образом, этапы модели или процедуры надбавляют внимание человека на различные аспекты и черты его опыта. Это перемещение внимания "создает своего рода «аттрактор», который стимулирует в человеке «самоорганизующееся» поведение. Если вы заметите, как теннисный мяч коснулся земли, прежде чем долетел до вас, это автоматически повлияет на то, как вы взмахнете ракеткой, чтобы отбить мяч. Подобным образом, если прислушиваться к изменению тона голоса собеседника, а не к содержанию его слов, или наблюдать его выражение лица, вместо того чтобы обращать внимание на тип одежды, которую он носит, то все эхо повлияет на способ вашей реакции на этого человека.
Инструкции и процедуры, составляющие принципы, этапы и стратегии поведенческой модели, таким образом, подобны «весу» в нервной сети. Применение «обратного распространения» в поведенческом моделировании будет включать в себя (рис. 35):
1) попытку применить шаги, стратегии и особенности, определяемые моделью, в соответствующем контексте;
2) концентрацию на достигнутых результатах и сравнение их с желаемыми;
3) регулировку мер и особенностей, предлагаемых моделью, с целью повысить «степень приближения»;
4) попытку применить новые настройки модели и продолжающиеся попытки повторения процесса до тех пор, пока вы (или люди, на которых рассчитана эта модель) не достигнете требуемого «порогового» уровня желаемого результата.
С помощью данного механизма модель совершенствуется в процессе опытного применения. Поправки как результаты сравнения реального и желаемого результатов вносятся до тех пор, пока не будет выработана наиболее эффективная и элегантная модель.
Рис. 35.
Обратите внимание, что данный подход к оцениванию и совершенствованию модели фундаментально отличается как от простой «обратной связи» (где результат деятельности системы возвращается в нее как новые данные), так и от попытки статистического обоснования теории через анализ результатов. «Обратное распространение» подразумевает непрерывную регулировку самой модели как функцию сравнения ее результата с желаемым результатом.
Конгруэнтность кода
По мнению Грегори Бейтсона, «если хочешь подумать о чем-либо, лучше всего думать об этом так, как думает оно само». Понятие «конгруэнтность кода», введенное Бейтсоном, подразумевает, что наиболее эффективными и экологичными являются те модели, в которых взаимосвязи между элементами соответствуют взаимосвязям внутри системы элементов моделируемого явления.
В частности, Бейтсон указывает, что мы можем описать человеческую кисть как «пять бананоподобных объектов» или как «четыре взаимосвязи» между соседними пальцами (рис. 36). Возникает вопрос: «Какое из описаний наиболее соответствует тому, с помощью которого ДНК и другие генетические процессы создали настоящую человеческую кисть?» Другой вопрос звучит так: «Что изменится, если мы попытаемся создать или воспроизвести руку, думая о ней как о четырех взаимосвязях, а не о пяти объектах?» Бейтсон утверждает, что наиболее «конгруэнтные коду» модели, как правило, более элегантны (просты), полезны и экологичны.
Рис. 36. Кисть - это пять объектов или четыре взаимосвязи?
Хорошим примером значимости конгруэнтности кода для моделирования является сдвиг в понятийном и математическом аппарате астрономии, который произошел в эпоху позднего Возрождения. Средневековые астрономы предполагали, что Земля является центром Солнечной системы. По их представлениям, все планеты вращаются вокруг Земли, а не вокруг Солнца (рис. 37). Для того чтобы охарактеризовать траектории планет относительно Земли, астрономам приходилось использовать изощренные и запутанные математические описания. (Если допустить, что Земля является центром Солнечной системы, то в орбитах планет появятся странные петли и изгибы.)
Рис. 37. Орбиты планет относительно Земли как «центра» Солнечной системы
Рис. 38. Орбиты планет относительно Солнца как «центра» Солнечной системы
После того как эта модель наконец изменилась и в центре всех орбит оказалось Солнце, стало очевидно, что планеты следуют по относительно примитивным эллиптическим траекториям (рис. 38). Неожиданно стало намного проще математически обосновать движение небесных тел.