Мозг, исцеляющий себя. Реальные истории людей, которые победили болезни, преобразили свой мозг и обнаружили способности, о которых не подозревали
Шрифт:
Неврологи Карл Котман, Хитер Олиф и их коллеги продемонстрировали, что мыши, которые добровольно выполняют упражнения на колесе, увеличивают свой уровень BDNF [73] . Чем длиннее дистанция, тем выше показатель BDNF. Это увеличение происходит в гиппокампе, где, как мы видели, происходит превращение краткосрочных воспоминаний в долговременные (консолидация памяти), что необходимо для обучения. (Краткосрочная память резко ухудшается при болезни Альцгеймера [74] , но пациенты с болезнью Паркинсона тоже испытывают проблемы с памятью.) BDNF также может защищать нейроны [75] и стимулировать рост нейронов в части базальных ядер, называемой полосатым телом (стриатум).
73
…мыши, которые добровольно выполняют упражнения на колесе, увеличивают свой уровень BDNF. – Oliff et al., “Exercise-Induced Regulation.”
74
Недавние исследования показывают, что высокий уровень BDNF
75
BDNF также может защищать нейроны. – C. W. Cotman and N. C. Berchtold, “Exercise: A Behavioral Intervention to Enhance Brain Health and Plasticity”, Trends in Neurosciences 25, no. 6 (2002): 295–301, 296 box 1.
Многочисленные исследования показывают, что упражнения улучшают способность животных к обучению пропорционально росту уровня BDNF [76] . Люди лучше справляются с когнитивными тестами, если они занимаются физподготовкой и находятся в хорошей физической форме во время экзамена. Котман и его коллега Николь Бертольд полагают, что сочетание учебы и упражнений помогает сохранять пластичность мозга и даже увеличивает ее, так как обучение усиливает транскрипцию генов, кодирующих BDNF, а BDNF способствует обучению. Таким образом, чем больше люди учатся, тем больше они способны учиться и изменять свой мозг в соответствии с усвоенными навыками.
76
…упражнения могут улучшить способность животных к обучению пропорционально росту уровня BDNF. – S. Vaynman et al., “Hippocampal BDNF Mediates the Efficacy of Exercise on Synaptic Plasticity and Cognition”, European Journal of Neuroscience 20, no. 10 (2004): 2580–90.
Учеба и физические упражнения – это удачное сочетание. Когда люди достигают среднего возраста, мозг начинает утрачивать нейронные связи. Физическая активность – один из немногих способов противодействия этому процессу. Понимание этого как никогда важно, поскольку многие люди ведут сидячий образ жизни перед экранами компьютеров и не двигаются с места большую часть дня. Многочисленные исследования показывают, что сидячий образ жизни является значительным фактором риска [77] не только для болезней сердца, но также для рака, диабета и нейродегенеративных расстройств. Если в медицине существует панацея, то это ходьба.
77
…сидячий образ жизни является значительным фактором риска. – S. Vaynman and F. Gomez-Pinilla, “License to Run: Exercise Impacts Functional Plasticity in the Intact and Injured Central Nervous System by Using Neurotrophins”, Neurorehabilitation and Neural Repair 19, no. 4 (2005): 283–95, 290.
Пациенты с болезнью Паркинсона пойманы в сжимающуюся петлю. Быстрая ходьба может помочь им, но быстрая ходьба – как раз то, чего они практически не могут делать. А человек с болезнью Паркинсона, отказавшийся от ходьбы, не сохраняет «статус-кво»: его состояние ухудшается. Этому есть несколько причин. Во-первых, болезнь прогрессирует. Во-вторых, мозг – это орган, работающий по принципу «используй или потеряй». Если из-за затруднений при ходьбе пациент снижает уровень двигательной активности, то сохранившиеся еще нейронные сети, отвечающие за моторику ходьбы, продолжают распадаться из-за неиспользования. Если спустя какое-то время человек пытается снова воспользоваться ими, у него может ничего не выйти. Тогда его мозг, регистрирующий любые изменения, «выучит», что организм больше не может ходить.
Выученная беспомощность впервые наблюдалась у людей, перенесших инсульт. Более ста лет было известно, что после инсульта мозг входит в шоковое состояние, называемое диасхизом [78] (в буквальном переводе – «расщепление»). Шок возникает из-за того, что после гибели нейронов из умерших клеток попадают в межклеточную среду химические вещества, повреждающих другие клетки, возникает воспаление и закупорка кровотока вокруг мертвой ткани. Эти события нарушают нормальное функционирование не только в месте инсульта, но и по всему мозгу. Кроме того, сразу же после травмы мозг испытывает «энергетический кризис» [79] , так как ему приходится расходовать очень много глюкозы, чтобы справиться с повреждением. (Даже в здоровом состоянии мозг требует огромного количества энергии. Он составляет лишь 2 % от веса тела, но на его долю приходится 20 % всей потребляемой организмом энергии.) Период диасхиза обычно продолжается около шести недель, и в этот период поврежденный мозг особенно уязвим [80] , так как у него не хватает энергии, чтобы справляться с еще каким-то ущербом [81] .
78
…мозг входит в шоковое состояние, называемое диасхизом. – Этот термин, происходящий от греческого слова «расщепление», используется клиницистами для обозначения «глубокого шока» и был введен в оборот русско-швейцарским невропатологом Константином Монаковым в 1914 году. Он утверждал, что повреждение мозга является вовсе не таким ограниченным, как полагало большинство исследователей.
79
…после травмы мозг испытывает «энергетический кризис». – C. C. Giza and D. A. Hovda, “The Neurometabolic Cascade of Concussion”, Journal of Athletic Training 36, no. 3 (2001): 228–35, 232.
80
…поврежденный мозг особенно уязвим. – Ibid., 232.
81
Поэтому люди, получившие сотрясение или другую травму мозга, не должны подвергать себя повторному риску до полного выздоровления.
До того, как мы осознали, что мозг является пластичным, врачи
Эдвард Тауб, один из ведущих специалистов по нейропластике, провел серию экспериментов и обнаружил, что ни животные, ни люди не были обречены жить только с теми функциями, которые у них сохранились спустя шесть недель после инсульта. Когда пациенты после инсульта пытались поднять парализованную руку во время диасхиза и обнаруживали, что не могут этого сделать, то «учились» не пользоваться этой рукой и полагаться на действующую руку. Из-за неупотребления нейронные сети, управлявшие этой рукой, приходили в негодность. Тауб продемонстрировал, что человек может восстановить контроль над парализованной рукой. Он поместил действующую руку пациента в гипс и стал тренировать парализованную или частично парализованную руку. Гипс на здоровой руке сковывал движения, пользоваться ею было неудобно. И тогда пациент учился пользоваться парализованной рукой. Эта методика работала даже спустя годы после инсульта.
Тауб с успехом применил эту методику, получившую название «терапия вынужденного ограничения» для пациентов после инсульта, которые не могли пользоваться руками, а потом перешел к парализованным ногам. МРТ-исследования мозга показывали, что, когда после терапии Тауба пациенты восстанавливали подвижность конечности, нейроны, соседствующие с поврежденным участком в мозге, заменяли поврежденные или мертвые нейроны. (Подробности его работы обсуждаются в пятой главе книги «Пластичность мозга».)
Эксперименты Тиллерсона, Г. У. Миллера, Зигмонда и других над животными с симптомами паркинсонизма показали, что выученная беспомощность играет важную роль в развитии болезни Паркинсона [82] и что ее можно преодолеть с помощью терапии Тауба, добиваясь поразительных улучшений.
Инъекция 6-OHDA в мозг крысы может вызвать острые симптомы паркинсонизма с одной стороны тела животного, поскольку это вещество вызывает девяностопроцентное истощение дофаминовой системы. У одной группы экспериментальных животных здоровые конечности помещали в гипс в течение первых семи дней после инъекции, поэтому они были вынуждены пользоваться пораженными конечностями. Когда гипс снимали, конечности, которые должны были быть парализованы, двигались без труда. Это был еще один поразительный результат. Упражнения каким-то образом предотвратили значительную деградацию поврежденной системы даже при отсутствии 90 % дофамина. Потом ученые на семь дней наложили гипс на поврежденную конечность, чтобы животное не могло пользоваться ею. В результате все приобретенные навыки оказались утраченными [83] . (Вспомните, что когда Пеппер был прикован к постели легочной инфекцией или операцией и не мог заниматься ходьбой, все его симптомы возвращались.)
82
…выученная беспомощность играет важную роль в развитии болезни Паркинсона. – J. L. Tillerson and G. W. Miller, “Forced Limb-Use and Recovery Following Brain Injury”, Neuroscientist 8, no. 6 (2002): 574–85.
83
…наложили гипс на поврежденную конечность… все приобретенные навыки оказались утраченными. – J. L. Tillerson et al., “Forced Limb-Use Effects on the Behavioral and Neurochemical Effects of 6-Hydroxydopamine”, Journal of Neuroscience 21, no. 12 (2001): 4427–35.
Тиллерсон и Миллер смогли показать, что животные, вынужденные пользоваться пораженной конечностью, не имели проблем с движением, уровень дофамина в их мозге значительно не менялся. Если ученые откладывали наложение гипса на здоровую конечность на три дня, то происходило лишь частичное восстановление функций и снижение уровня дофамина. Если они увеличивали задержку до четырнадцати дней, наложение гипса практически не давало эффекта – уровень дофамина стремительно снижался.
Эти исследования означают, что развитие последствий тяжелого, изменяющего жизнь заболевания даже на значительной стадии развития иногда можно предотвратить, если животное остается активным. Применительно к людям это значит, что физические упражнения должны быть одной из первых рекомендаций для человека с ранними признаками болезни Паркинсона. Тиллерсон, Миллер и Зигмонд показали, что животные с 20 %-ной потерей дофамина быстро теряют 60 %, если их движения ограниченны. «Эти результаты подразумевают, что подавленная физическая активность не только является симптомом БП, но обеспечивает условия для дальнейшей дегенерации» [84] . Вероятно, худшее, что может сделать пациент, узнавший свой диагноз, – это снизить свою физическую активность.
84
«…подавленная физическая активность не только является симптомом БП, но обеспечивает условия для дальнейшей дегенерации». – J. L. Tillerson et al., “Forced Nonuse in Unilateral Parkinsonian Rats Exacerbates Injury”, Journal of Neuroscience 22, no. 15 (2002): 6790–99. Тиллерсон, Зигмонд и Миллер продемонстрировали это, когда вводили крысам низкую дозу 6-OHDA в одно полушарие мозга, так что животные теряли 20 % дофамина, чего было недостаточно для развития симптомов. Потом некоторым животным накладывали гипс на здоровую конечность. Через семь дней, когда гипс снимали, происходило нечто странное: 20 %-ная потеря дофамина в инъецированном полушарии резко возрастала до 60 %. Иными словами, эта краткая моторная депривация резко ускорила развитие болезни. Выработка дофамина очень динамична.