Наблюдения и озарения или Как физики выявляют законы природы
Шрифт:
Аналогичная картина теперь соотносится и с гравитационным полем, но здесь нет вершин — только одни впадины (в отличие от электричества, гравитация ведет только и только к силам притяжения, роль заряда играет величина массы). Поэтому наряду с описанием поля тяготения на основе сил Всемирного тяготения или дефекта масс, ОТО ведет к третьему представлению: поле центральной звезды искривляет пространство, а планеты как бы катятся (можно говорить об «инерции») по своим геодезическим траекториям в этом искривленном пространстве. И в этом концептуальное отличие от электродинамики Максвелла, а следовательно и от СТО — там все сводится к полю, в ОТО происходит фактический отказ от поля, на его место вступает геометрия. (Сам Эйнштейн говорил, что все его другие теории были бы, с некоторой, возможно, задержкой,
Первой и самой важной в этом направлении является проверка принципа эквивалентности: действительно ли равны инерционная и гравитационная массы? Очень скрупулезная проверка соответствия этих масс была проведена, независимо от ОТО, в 1889–1908 гг. бароном Лорандом фон Этвешем (1848–1919) в Венгрии — Эйнштейн, надо заметить, узнал об этом уже после разработки своей теории.
Проблемой в расчетах движения планет Солнечной системы по закону Всемирного тяготения являлось смещение перигелия (самой ближней к Солнцу точки эллиптической орбиты планеты) Меркурия. Еще Леверье, который открыл «на кончике пера» планету Нептун, обнаружил, что это смещение, 38 угловых секунд за столетие, никак не укладывается в абсолютно точную картину движения планет по Ньютону — Лапласу. Предполагалось даже, что такое расхождение указывает на наличие еще одной планеты — ее искали долго и упорно, но не нашли.
А вот ОТО показала, что все правильно: Меркурий — самая близкая в Солнцу планета, он вращается в самом сильном поле тяготения, в котором уже заметны отклонения ОТО от закона Ньютона. И Эйнштейн получил точно наблюдаемые цифры.
Следующая проверка была уже оптической. Световые волны несут энергию, а энергия пропорциональна массе, следовательно, гравитационное поле должно действовать на световые лучи — загибать их в свою сторону. Отклонение это очень мало, и проверить его тогда можно было только во время солнечного затмения: положения звезд около края Солнца, согласно ОТО, на фотографиях должны быть в эти моменты несколько смещены.
Экспедиция, отправленная в Россию из Германии для наблюдений затмения 1914 г., не смогла доехать до места наблюдения из-за начала военных действий. Успех сопутствовал экспедиции Артура Стенли Эддингтона, астронома и физика-теоретика: 19 мая 1919 были получены фотографии звезд, и 6 ноября 1919 г. президент Королевского общества Дж. Дж. Томсон оглашает результаты обсчета полученных данных — Эйнштейн полностью прав, лучи отклоняются точно на предсказанный угол, на 1,7 угловых секунд! Томсон провозглашает открытие Эйнштейна «одним из величайших — а может быть, и самым великим — достижением в истории человеческой мысли!»
В этот день произошла, если можно так выразиться, «канонизация» Эйнштейна — он становится самым знаменитым человеком мира. И это легко понять: только что закончилась самая кровопролитная на то время война в истории человечества, Европа в руинах, голод в Германии, продолжаются непонятная гражданская война в России, погромы и резня на территориях бывшей Османской империи. И тут теорию ученого из Германии, гражданина Швейцарии, подтверждают ученые Англии — как будто восстанавливается интеллектуальное братство бывших врагов, прославляется не воин, не создатель нового оружия, а человек, познающий тайны Вселенной, новый Ньютон!
Говорят, что лишь один человек, из тех кто узнал о сообщении Эддингтона, остался невозмутимым — это был сам Эйнштейн, он ведь и так знал, что лучи отклоняются!
Теория относительности и сам Эйнштейн стали предметом поклонения и… моды. Писали, что человек не мог быть принятым в «обществе», если не был способен с умным видом поговорить о них. В Англии и Бельгии Эйнштейна поселяли в королевских дворцах, из Иерусалима ему с женой пришлось сбежать через два дня: по приказу британского генерал-губернатора просыпание ученого отмечалось по утрам артиллерийским салютом, а при выезде на автомобиле в город их пытался сопровождать эскадрон драгун.
Новые взгляды, конечно, принимались не сразу. К известной эпитафии А. Поупа на смерть Ньютона: «Был этот мир глубокой тьмой окутан. /Да будет свет! И вот явился Ньютон», — добавляли
В последующем все эти эффекты не раз проверялись со все возрастающей точностью — соответствие ОТО было полным.
Отклонение света в гравитационном поле объясняет такое интересное наблюдение. В 1960 г. были открыты мощные далекие источники электромагнитного излучения, квазары (сокращение от английского обозначения — квазизвездные источники радиоизлучения), которые, по-видимому, представляют собой активные ядра далеких галактик. Сейчас обнаружено много квазаров, но удивительно то, что среди них имеются пары (и даже одна четверка), почти абсолютно одинаковые и расположенные очень близко друг к другу. Поэтому возникло предположение (1979), что такие пары — это один квазар, излучение которого по пути к нам проходит через область мощного гравитационного поля и преломляется в нем, давая два (или даже четыре) изображения — т. е. могут существовать гравитационные «линзы».
Один их самых интересных и важных для космологии выводов ОТО состоит в том, что чем сильнее гравитационное поле, тем медленнее течение времени. Этот эффект был проверен прямым методом: брались две пары одинаковых часов и одни из них поднимали на гору Плато Роза (в Италии, близ Турина) — оказалось, что часы на вершине, в более слабом поле, уходили вперед на 30 наносекунд в день (опыт неоднократно перепроверяли, согласие с ОТО было полным).
Эффект Мессбауэра, о котором мы будем говорить, позволил достаточно легко проверить и такое предсказание ОТО: если свет распространяется в гравитационном поле, то должна меняться его энергия, т. е. частота электромагнитного излучения. (Этим способом точность предсказаний ОТО проверена вплоть до величины в 0,04 %.)
Согласно принципу относительности, скорость распространения гравитационного поля не должна превышать, в своей системе отсчета, скорости света. Как же будут распространяться изменения такого поля? Естественно предположить, что такой процесс должен быть волновым.
Но зарегистрировать эти водны очень сложно: гравитационное поле во много раз слабее электромагнитного, а быстро сдвинуть большие массы невозможно. Основные надежды при этом возлагаются на анализ таких явлений, как вспышки звезд: в нескольких местах Земли в тщательно экранированных подземельях подвешены многотонные однородные болванки (гравитационные антенны) — если они одновременно «вздрогнут» во всех лабораториях на разных континентах и это явление можно будет увязать, скажем, со взрывом сверхновой или столкновением пульсаров, то станет возможным пересчитать скорость и интенсивность гравитационных волн. (Описание фактического открытия существования гравитационных волн, как и другие подтверждения предсказаний ОТО отложим до главы о космологии и астрофизики.)
Отступление II
Научные школы
Ученый, ты объясняешь нам науку, но кто объяснит нам твое объяснение?
Дж. Г. Байрон
Когда-то Вильгельм Оствальд разделил всех ученых на «классиков» и «романтиков», однако, критерии, им выбранные, отнюдь не являются бесспорными. Можно придумать много иных способов распределить ученых, о которых мы рассказываем, по группам: по национальности, по социальному происхождению, по отношению к религии, по социальным или философским убеждениям, по родному языку (он как-то отражается на ментальности человека, хотя, вероятно, не в полном соответствии со штампами: основательность немецкого, артистичность итальянского, сдержанность английского, острота французского), по отношению к женщинам… Вероятно, можно использовать для анализа характера любовь или нелюбовь к музыке: страстные ее поклонники — Больцман, Планк, Эйнштейн, Гейзенберг, Л. Альварец, Фейнман, равнодушные — Бор, Резерфорд, Ферми, Ландау и др., а может быть, критерием классификации ученых способно послужить и их отношение к спорту. Можно рассуждать о скорости реакции или о скорости решения задач (как на экзаменах), но тут такое противоречие: Эйнштейн, Ферми, Ландау мгновенно выдавали ответ, а вот Планк, Бор, Паули, а еще дольше Давид Гильберт, подолгу обдумывали даже достаточно простые вопросы.