Наблюдения и озарения или Как физики выявляют законы природы
Шрифт:
Мы уже не раз говорили, что для описания поведения физической системы нужно задать в какой-то момент времени ее координаты и скорости или импульсы — это так называемые начальные условия, которые позволяют специализировать для рассматриваемого случая уравнения движения. Если же нужно рассматривать поведение большого числа частиц (их ансамбля), то естественно, в одномерном случае, взять лист бумаги, нарисовать две оси (координату и импульс) и расставить точки — положения и импульсы всех частиц в начальный момент времени, такой рисунок называется фазовой плоскостью. Площадь всех квадратиков на такой фазовой плоскости имеет размерность функции
Со времен Максвелла такой метод построения распределений является основным для статистической физики. Но при этом всегда встает вопрос о том, каковы должны быть размеры тех квадратиков, на которые делится эта фазовая плоскость. И вот, во время обсуждений на конгрессе начало становиться яснее, что площадь квадратиков должна быть пропорциональна постоянной Планка.
А затем стало ясно и более глубокое соображение: частицы, находящиеся в одной ячейке фазовой плоскости, можно считать неразличимыми, т. е. приписывать им одинаковые физические параметры. Так еще раз, помимо поглощения абсолютно черного тела, фотоэффекта и удельной теплоемкости, на сцену выходит постоянная Планка, а с ней — квантовая теория.
Первые расчеты Бора относились в основном к атому водорода, отчасти к гелию. Теперь нужно было рассмотреть более сложные атомы. Этот период развития теории закончился примерно к 1922 г., и называется он старой или боровской квантовой механикой. Основывалась она главным образом на принципе соответствия, предложенном Бором: если рассматривается такое состояние системы, при котором величиной постоянной Планка можно пренебречь, то все соотношения должны переходить в соотношения классической, т. е. неквантовой, теории.
Отметим, что схожий принцип применим, конечно, и к релятивистским, т. е. соответствующим теории относительности, выражениям: если в них можно устремить скорость света к бесконечности, то они должны перейти в соотношения механики Ньютона или соответствующие выражения электродинамики.
Как писал Макс Борн, «теоретическая физика жила этой идеей последующие десять лет. Искусство угадывания правильных формул, которые отклоняются от классических, но переходят в них, в смысле принципа соответствия было значительно усовершенствовано».
Принцип этот носил, конечно, эвристический характер, но все же помогал найти приближенные выражения и, в частности, помог объяснить структуру периодической системы элементов Менделеева, которая первоначально строилась исключительно на сходстве физикохимических свойств веществ.
Уже рассмотрение спектров атома водорода привело Бора к введению понятия электронных оболочек (или уровней) атома: есть первый уровень, второй, третий и т. д. По старой традиции, они обозначаются не в порядке алфавита: первый — это К-уровень, а потом идут L-уровень, М-уровень и т. д. Номер уровня называется главным квантовым числом и обозначается как п = 1,2,3….. Энергия электрона на уровне убывает обратно пропорционально квадрату главного квантового числа.
Но если электрон вращается по орбите, то у него, как и у планеты, должна
В Солнечной планетной системе все орбиты находятся примерно в одной плоскости (плоскость эклиптики). Объясняется это, во-первых, наиболее вероятным происхождением всех планет из одного вращающегося протопланетного облака, а во-вторых, силами притяжения между планетами. В случае атома и при рассмотрении электронных орбит этих ограничений нет, но если атом внесен в магнитное поле, то магнитный момент, индуцируемый током (каждый электрон на орбите может рассматриваться как круговой ток), пропорционален моменту импульса: орбита может быть перпендикулярна силовым линиям поля, может развернуться на 180 градусов, может стать под углом к этим линиям. Но ведь можно потребовать, чтобы при всем при этом энергия в поле оставалась целой, кратной (в соответствии с принципом квантования) какой-то величине. Таким образом возникает еще одно квантовое число, азимутальное, т. е. отсчитывающее угол от азимута, от направления магнитного поля.
Теперь можно начать рассматривать периодическую систему элементов. В первой строке стоят водород (у него один электрон) и гелий с двумя электронами, а поскольку главное квантовое число равно единице, то орбитальное равно нулю, т. е. орбиты электронов сами равномерно вращаются, и у этих уровней нет магнитных моментов (у атома водорода магнитный момент определяется моментом ядра, а у гелия полный момент равен нулю). Принимаем, что таким образом S-уровень (гелиевая оболочка) заполнен и со второй строки начинается заполнение Р-уровня.
Первый элемент второй строки, литий, содержит два электрона на первом уровне и один на втором, у бериллия там два электрона и т. д. вплоть до неона, у которого на втором уровне восемь электронов.
Неоценимую помощь в работе Бора и его школы сыграли владельцы датского пивного концерна «Карлсберг»: осознавая роль Бора, величайшего своего соотечественника, концерн финансировал работу его института. Шутки того времени о «пивной основе» достижений Бора выдавали плохо скрываемую зависть ученых других стран — таких патриотов там не нашлось. Еще одной шуткой того времени были слова о том, что официальный язык в Копенгагене — это ломаный английский: физики собирались со всего света.
А почему не может быть больше, почему после неона должна начать формироваться уже третья строка?
Бор может объяснить: главное квантовое число этого уровня равно двум, значит, допустимы орбитальное число нуль с нулевыми же азимутальными числами и орбитальное число один — с тремя азимутальными числами: +1, 0, -1. Итак, на втором уровне — четыре разных квантовых состояния. Если в каждом из них могут быть два электрона (потом будет доказано и объяснено это предположение), то получается, что на втором уровне как раз и помещается не более, чем восемь электронов.