Чтение онлайн

на главную - закладки

Жанры

Начертательная геометрия: конспект лекций
Шрифт:

Иначе говоря, с помощью эпюр можно определить натуральные размеры углов, которые рассматриваемая прямая образует с плоскостями проекций.

Угол, который составляет прямая с горизонтальной плос костью Н, принято обозначать буквой , с фронтальной плоскостью – буквой , с профильной плоскостью – буквой .

Любая из рассматриваемых прямых не имеет следа на параллельной ей плоскости, т. е. горизонтальная прямая не имеет горизонтального следа (рис. 22), фронтальная прямая не имеет фронтального следа (рис. 23), а профильная прямая – профильного следа (рис. 24).

4. Взаимное расположение двух прямых

Возможны три случая расположения прямых в пространстве:

1) прямые пресекаются, т. е. имеют общую точку;

2) прямые

параллельны, т. е. не имеют общей точки, но лежат в одной плоскости;

3) прямые скрещиваются, т. е. не лежат в одной плоскости, т. е. через них нельзя провести плоскость.

Когда прямые пересекаются, на эпюре точки пересечения их одноименных проекций на горизонтальной и фронтальной плоскостях находятся на одном перпендикуляре к оси х.

Рассмотрим прямые I и II, которые пересекаются в точке А (рис. 26). Спроецируем обе прямые на горизонтальную плоскость. Если учесть, что точка А принадлежит обеим прямым, то ее проекция а будет принадлежать также и обеим проекциям прямых.

Похожая картина будет и на фронтальной плоскости, т. е. эти точки пересечения одноименных проекций а и а являются проекциями некоторой точки А, и поэтому они должны лежать на одном перпендикуляре к оси х. Точно так же будет верным и обратное утверждение: если на эпюре точки пересечения одноименных проекций прямых на две плоскости (горизонтальную и фронтальную) лежат на одном перпендикуляре к оси х, то эти прямые пересекаются.

Пусть проекции прямых I к II (рис. 27) подчиняются этому условию.

Тогда точки пересечения их одноименных проекций можно рассматривають как проекции некоторой точки в пространстве. Обозначим точку пересечения горизонтальных проекций 1 и 2 буквой а, а точку пересечения фронтальных проекций 1 и 2 – буквой а. Рассматриваемая точка А находится и на прямой I, и на прямой II. То есть она является их общей точкой, в которой пересекаются эти прямые.

Прямое утверждение справедливо во всех случаях без исключения. Обратное же утверждение неприменимо в том случае, если хотя бы одна из прямых профильная.

Когда прямые параллельны, на эпюре их одноименные проекции параллельны (рис. 28).

На самом деле, плоскости Р и Q, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в каждой из этих плоскостей можно указать две пересекающиеся прямые, параллельные двум пересекающимся прямым второй плоскости, т. е. прямая I параллельна прямой II, и проектирующий луч Аа параллелен лучу Вb. Но две параллельные плоскости Р и Q пересекут горизонтальную плоскость. В результате этого образуются две параллельные прямые 1 и 2, т. е. горизонтальные проекции прямых I и II параллельны между собой.

Аналогично можно доказать, что и любые другие одноименные проекции обеих прямых также будут параллельны друг другу.

Верно и обратное утверждение: прямые параллельны, если на эпюре их одноименные проекции параллельны.

Если известно, что горизонтальные и фронтальные проекции прямых I и II параллельны, будет справедливо следующее: 1 || 2 и 1|| 2 (рис. 29).

В

этом случае можно сказать, что плоскости РI и РII, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в этих плоскостях можно указать по паре пересекающихся соответственно параллельных прямых (прямые 1 и 2 и проецирующие лучи). Аналогично плоскости QI и QII будут параллельны.

Прямая I находится в пересечении плоскостей РI и QI, а прямая II – в пересечении плоскостей РII QII. Отсюда получаем, что прямая I параллельна плоскости РII, потому что находится в плоскости, ей параллельной. Однако прямая I параллельна и плоскости QII. Поэтому прямая I параллельна линии пересечения плоскостей РII и QII, т. е. прямой II.

Доказательство обратного утверждения не имеет смысла для профильных прямых. Это объясняется тем, что тогда вместо двух плоскостей, проецирующих прямую на горизонтальную и фронтальную плоскости, существует только одна, дважды проецирующая плоскость (рис. 30).

Видно, что вне зависимости от расположения двух профильных прямых I и II в пространстве их горизонтальные и фронтальные проекции всегда параллельны (или сливаются).

Прямые будут являться скрещивающимися, если они не параллельны и не пересекаются. Это вытекает из того, что возможны только три случая взаимного расположения прямых.

Для скрещивающихся прямых справедливы утверждения:

1) точки пересечения одноименных проекций на горизонтальной и фронтальной плоскостях не лежат на одном перпендикуляре к оси х (прямые I и II на рис. 31).

2) хотя бы в одной паре одноименные проекции не параллельны (прямые III и IV на рис. 31).

Рисунок 31 показывает проекции четырех прямых, любая пара из которых скрещивается.

Как и в рассмотренных ранее случаях, обратное утверждение для скрещивающихся прямых несправедливо при условии, что хотя бы одна из прямых является профильной.

5. Перпендикулярные прямые

Рассмотрим теорему: если одна сторона прямого угла параллельна плоскости проекций (или лежит в ней), то прямой угол проецируется на эту плоскость без искажения.

Приведем доказательство для прямого угла ABC, одна сторона которого ВС параллельна горизонтальной плоскости (рис. 32).

Плоскость, в которой находится сторона угла АВ и ее проекция ab, перпендикулярна горизонтальной плоскости, так как содержит перпендикуляр Вb к этой плоскости. Прямая ВС перпендикулярна плоскости Q вследствие ее перпендикулярности двум пересекающимся прямым этой плоскости (АВ и Вb). Прямая bc параллельна ВС, т. е. она также перпендикулярна Q, а значит и прямой ab, которая лежит в ней.

Поделиться:
Популярные книги

Стратегия обмана. Трилогия

Ванина Антонина
Фантастика:
боевая фантастика
5.00
рейтинг книги
Стратегия обмана. Трилогия

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Пехотинец Системы

Poul ezh
1. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Пехотинец Системы

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Том 1. Солнце мертвых

Шмелев Иван Сергеевич
1. И. Шмелев. Собрание сочинений в 5 томах
Проза:
классическая проза
6.00
рейтинг книги
Том 1. Солнце мертвых

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

ИФТФ им. Галушкевича. Трилогия

Кьяза
Фантастика:
фэнтези
юмористическая фантастика
5.00
рейтинг книги
ИФТФ им. Галушкевича. Трилогия

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Алые перья стрел

Крапивин Владислав Петрович
Детские:
детские приключения
8.58
рейтинг книги
Алые перья стрел

Сын Тишайшего 2

Яманов Александр
2. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 2