Чтение онлайн

на главную - закладки

Жанры

Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?

Фаус Жозе Наварро

Шрифт:

Q•P-P•Q = ihI,

где i = sqrt(-1) – мнимая единица, h = h/2π – редуцированная постоянная Планка, I- единичная матрица. Элементы единичной матрицы, расположенные на главной диагонали, равны единице, все прочие – нулю. Это соотношение любопытно тем, что в нем присутствует число i. Оно было описано в XIX веке Коши и Гауссом и иногда используется в физике для упрощения некоторых формальных расчетов, однако в этой формуле мнимая единица появилась совершенно неожиданно, и в этом – еще одна особенность квантовой механики.

Матрицы

Матрица – это таблица с числами, которые обозначаются двумя индексами: первый указывает строку, в которой находится число, второй –

столбец. К примеру, квадратная матрица из двух строк и двух столбцов выглядит так:

Сложение и вычитание матриц интуитивно понятны: для этого нужно почленно сложить или вычесть элементы исходных матриц. Произведение матриц рассчитывается по особому правилу:

При умножении матриц порядок множителей, в общем случае, влияет на конечный результат. К примеру, произведения матриц

равны

Эти матрицы различаются между собой. Разностью этих произведений будет матрица

В общем случае, в квантовой механике используются квадратные матрицы бесконечной размерности, то есть имеющие бесконечное число строк и столбцов.

В сентябре Борн и Йордан отправили копию своей работы Гейзенбергу, который к тому времени уже находился в Копенгагене. Молодой ученый показал работу Бору со словами: «Здесь полно матриц, и я не представляю, что они означают». В результате Гейзенбергу пришлось срочно изучить матричную алгебру. Стремясь сформулировать новую механику, он переписывался с Борном и Йорданом. Результатом совместной работы стала статья под названием «О квантовой механике, часть II», законченная в ноябре 1925 года и подписанная Борном, Гейзенбергом и Йорданом в алфавитном порядке. Это была знаменитая Dreimannerarbeit («работа трех») с изложением основ новой теории на языке математических выкладок. В статье были по-новому сформулированы начальные постулаты квантовой теории: в ней описывалось существование стационарных энергетических состояний атомов и квантовые скачки между состояниями, сопровождающиеся излучением или поглощением света. Авторы называли свою теорию «истинной теорией дискретного». Она позволяла провести все необходимые расчеты для любой системы с периодическим движением и описать свойства атомов с помощью новой матричной механики.

Многие физики отнеслись к матричной механике прохладно; собственно, большинство из них даже не знали, что такое матрица. Эйнштейн писал своему другу Мишелю Бессо:

«Самым интересным из недавних теоретических результатов является теория квантовых состояний Гейзенберга, Борна и Йордана. Это по-настоящему волшебная таблица умножения, где на смену декартовым координатам пришли бесконечные матрицы. Она крайне любопытна и ввиду огромной сложности в достаточной мере защищена от опровержений».

Матричная теория была слишком абстрактной, и большинство ученых с облегчением приняли более доступную волновую механику, описанную Шрёдингером несколько месяцев спустя.

Иные формулировки квантовой механики

Напомним, что в 1923 году Луи де Бройль предположил, что электрону свойственен корпускулярно-волновой дуализм, то есть он ведет себя и как частица, и как волна, и разрешить этот дуализм можно с помощью законов оптики. При описании интерференции и дифракции света необходимо использовать волновые уравнения физической оптики. Однако при описании движения света в различных средах достаточно рассмотреть прямолинейные траектории, как если бы речь шла о движении частиц с разной скоростью в зависимости от среды. Задачи этого типа решаются в геометрической оптике. С XIX века было известно, каковы геометрические

пределы физической оптики и когда следует рассматривать лучи света вместо волн. Де Бройль предположил, что в этом математическом формализме классической физики можно найти аналогию с квантовым дуализмом. Австрийский физик Эрвин Шрёдингер решил тщательно рассмотреть эту аналогию для квантовых частиц, в частности электрона. В 1926 году он опубликовал шесть статей, в которых описал основы иной формулировки квантовой механики – волновую механику. В ее первом абзаце было сказано:

«В этой статье мне прежде всего хотелось бы показать на простейшем примере нерелятивистского свободного атома водорода, что обычные правила квантования могут быть заменены другими положениями, в которых уже не вводится каких-либо «целых чисел». Эти целые числа выводятся естественным образом, подобно целому числу узлов при колебаниях струны. Это новое представление может быть обобщено, и я верю, что оно тесно связано с истинной природой квантования».

Уравнение Шрёдингера

В формулировке, которая была предложена Эрвином Шрёдингером в 1925 году, состояние системы взаимодействующих частиц полностью описывается ее волновой функцией (ψ), которая зависит от времени и координат частиц. Если опустить релятивистские эффекты, то волновая функция будет решением уравнения

ihψ=Hψ

Рассмотрим использованные символы. Буква i обозначает мнимую единицу, то есть sqrt(-1). Буква h – редуцированную постоянную Планка h/2π. Точка над буквой, обозначающей функцию, – сокращенный способ обозначения производной по времени. В правой части уравнения записана функция Гамильтона H = T+V, равная сумме кинетической и потенциальной энергии системы. При рассмотрении электрона в атоме водорода кинетическая энергия, которая в классической физике определяется как Т = р²/(2m), задается оператором

в котором содержатся вторые дифференциалы волновой функции относительно пространственных координат (х, у, z). Потенциальная энергия рассчитывается по закону Кулона: V= -е² /r. Шрёдингер был весьма удивлен появлению числа i, так как был убежден в «вещественности» волновой функции. К одной из своих статей он добавил комментарий, в котором упомянул Паули и его особое чувство юмора:

«Откуда мог взяться sqrt(-1) в этом уравнении? Возможный ответ, который я не осмелюсь привести здесь в общем виде, дал физик, который некоторое время назад покинул Австрию, но […] не оставил свой утонченный венский юмор и всегда умеет найти подходящее слово. Его ответ был таков: sqrt(-1) «проскользнул» в уравнение (4"), словно бы мы дали ему проскочить туда случайно. Тем не менее эта случайность заставила нас почувствовать огромное облегчение».

На языке математики электрон в атоме описывается волновой функцией, обозначаемой греческой буквой (пси). Эта функция является решением дифференциального уравнения в частных производных, которое называется уравнением Шрёдингера.

Возможно ли, что природа столь абсурдна, как нам кажется во время экспериментов по атомной физике?

Этим вопросом часто задавался Гейзенберг после обсуждения квантовой механики с Бором.

Эйнштейн написал Шрёдингеру такие строки: «Я убежден, что вы, предложив свою формулировку квантового состояния, совершили решающий прорыв, равно как я убежден в том, что метод Гейзенберга – Борна ошибочен». Однако Эйнштейн оказался неправ: сам Шрёдингер отмечал, что матричная и волновая механика с математической точки зрения абсолютно эквивалентны, несмотря на различия в предпосылках, идеях и методах. В матричной механике электрон считается частицей. Классические непрерывные переменные в ней заменялись матрицами, зависящими от двух целочисленных индексов, а классические уравнения замещались алгебраическими. Волновая механика – это, напротив, теория непрерывного, в которой электрон рассматривается как волна. Динамическое уравнение – это уравнение в частных производных, содержащее загадочные квантовые условия старой классической квантовой теории. Однако и матричная, и волновая механика приводили к одинаковым результатам. Как подчеркнул Шрёдингер, превосходство одной теории над другой было «по сути, второстепенным вопросом, связанным с удобством вычислений».

Поделиться:
Популярные книги

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Законник Российской Империи

Ткачев Андрей Юрьевич
1. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Законник Российской Империи

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Идеальный мир для Лекаря 24

Сапфир Олег
24. Лекарь
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Идеальный мир для Лекаря 24

Товарищ "Чума"

lanpirot
1. Товарищ "Чума"
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Товарищ Чума

Инженер Петра Великого 2

Гросов Виктор
2. Инженер Петра Великого
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Инженер Петра Великого 2

Берсерки. Трилогия

Злотников Роман Валерьевич
Берсеркер Галактики
Фантастика:
боевая фантастика
8.92
рейтинг книги
Берсерки. Трилогия

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Фиктивный брак госпожи попаданки

Богачева Виктория
Фантастика:
историческое фэнтези
фэнтези
5.00
рейтинг книги
Фиктивный брак госпожи попаданки

На прицеле

Кронос Александр
6. Лэрн
Фантастика:
фэнтези
боевая фантастика
стимпанк
5.00
рейтинг книги
На прицеле

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Сумеречный Стрелок 10

Карелин Сергей Витальевич
10. Сумеречный стрелок
Фантастика:
рпг
аниме
фэнтези
5.00
рейтинг книги
Сумеречный Стрелок 10

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2