Чтение онлайн

на главную - закладки

Жанры

Невидимый конфликт

Оксанович Людмил

Шрифт:

Подобные жесткие угловые связи между отдельными элементами рамы не представляют проблемы для монолитного железобетона, более того, они отвечают его природе. Поэтому монолитные железобетонные конструкции оказывают значительное сопротивление внешним воздействиям, отличаются большой жесткостью и устойчивостью к землетрясениям. К сожалению, в случае сборных железобетонных и стальных конструкций положение более сложное. Там решающее значение имеют соединения между отдельными готовыми элементами. А так как выполнение жестких соединений — дело сложное, трудоемкое и требует значительных затрат времени, конструкторы во имя простоты и высоких темпов строительства отказываются от них. В таких, весьма частых, случаях балка свободно опирается на колонны, а колонны, по существу, оказываются консолями (для горизонтальных усилий). Как мы видим, при подобном компромиссе в жертву приносятся два плюса рамных конструкций.

В многоэтажных зданиях воздействие горизонтальных сил приобретает устрашающие размеры. Оно с трудом воспринимается рамами.

А при определенной этажности восприятие горизонтальных усилий посредством совместной работы вертикальных и горизонтальных элементов становится совсем невозможным. В таких случаях по высоте здания проектируются специальные вертикальные диафрагмы и жесткие узлы; как правило, в работу включаются и лестничные клетки, которые должны полностью воспринимать горизонтальные усилия. Будучи выполненными из железобетона, они имеют вид сплошных гладких стен, а из стали — вид стержневых систем. Воспринятые диафрагмами жесткости или лестничными клетками горизонтальные усилия в значительной степени освобождают проектировщиков от необходимости обеспечить рамную работу стоек и балок, а следовательно, жесткие угловые соединения уже не являются необходимыми (это, однако, не означает, что они нежелательны). Жесткость рамных узлов — самое ценное свойство рам, и жертвуют им только тогда, когда этого требует само строительство.

ЭСКАЛАЦИЯ ПРОСТРАНСТВЕННЫХ ФОРМ

Одно из важнейших достижений современного строительства — широкое применение пространственных конструкций покрытия. Последние десятилетия нашего времени стали качественно новым этапом в истории техники.

Было бы преувеличением утверждать, что эти конструктивные формы возникли в нынешнем столетии. Простейшие из них имеют свои, хотя и грубые, аналоги в далеком прошлом. Но только аналоги и притом грубые. Так что было бы преувеличением говорить также о «возрождении» и «развитии» в новых вариантах старых, известных конструктивных форм. И все же первоисточник существует, и искать его следует в природе. Как мы знаем, в природе нет ни балок, ни ферм, ни рам. Природные конструкции, как правило, имеют пространственный характер, а поскольку все в природе мудро и рационально, они выдержали тысячелетние испытания и прошли сквозь сито естественного отбора. Так что мы можем считать их действительно самой эффективной формой преодоления пространства, предполагающей пространственность восприятия нагрузок.

Все рассмотренные нами основные конструктивные формы имеют линейный характер. Их ширина и высота несравнимо меньше длины, а рабочие схемы, в сущности, представляют собой сочетание прямых и кривых линий. Двухмерного листа бумаги практически достаточно, чтобы отразить их напряженные и деформационные состояния. Такой искусственный и «природонесообразный» подход человека приводит к серьезным конструктивным и эстетическим ограничениям конечного продукта строительства.

Промежуточной формой перехода от линейных (одномерных) к пространственным (трехмерным) конструкциям можно считать плиту. Это плоскостной несущий элемент, описывать который излишне. Железобетонные плиты мы видим каждый день как над своей головой, так и под ногами. Что же касается большинства человеческих нужд, то эта плоскостная и наиболее функциональная конструктивная форма является одной из самых распространенных на земном шаре. В сочетании с балками и без них плиты широко применяются в конструкциях перекрытий и крыш, в качестве путевого полотна в мостостроении и т. д. Однако плиты имеют весьма ограниченные конструктивные возможности. Поэтому и значение их в общем конструктивном решении может быть только локальным.

Рис. 25. В отличие от балок, ферм, арок и т.д. плита не линейная, а плоскостная конструктивная форма. Это форма, которая работает в весьма неблагоприятном режиме — прежде всего в режиме изгиба

О неэффективности плит при перекрытии больших пространств говорит рис. 25. Под действием вертикальных нагрузок возникает очень сложное напряженное состояние: изгибающие моменты в двух направлениях, крутящие моменты и поперечные силы — тоже в двух направлениях. Как и в случае балок, возникают нормальные напряжения изгиба и тангенциальные напряжения — от поперечных сил и от крутящего момента. Но, в отличие от балочных элементов, действие развивается не в одном направлении, а в плоскости плиты. Грубо можно представить ее работу как совместную работу большого числа перекрещивающихся в двух направлениях балок. Самым неприятным следует считать, конечно, наличие значительных изгибающих моментов, которые превалируют и в конечном счете определяют толщину плиты. А как мы помним, именно изгиб представляет собой наиболее острую форму невидимого конфликта между нагрузкой и конструкцией. Поэтому толщина плиты оказывается тем сечением, которое работает в самом неблагоприятном режиме.

Рис.26. Пологая оболочка двоякой кривизны: почти плита, но ...

Однако

достаточно слегка искривить плиту (рис. 26), чтобы получилась совершенно иная картина. Такую плиту, естественно, нельзя использовать в качестве конструкции перекрытия, но зато она может быть прекрасной конструкцией для крыши. Итак, при стреле подъема, составляющей лишь 1/10 меньшего пролета, плита мгновенно превращается в тонкостенную пространственную конструкцию — оболочку. Изгибающий момент почти исчезает — по крайней мере в обширной средней части оболочки, где устанавливается столь ценное безмоментное напряженное состояние. Внешняя нагрузка вызывает только нормальные (сжатие и растяжение) и тангенциальные (сдвиг) усилия. Последние, как и поперечные силы, действуют в плоскости сечения, но, в отличие от них, «повернуты» на 90° и фактически находятся в плоскости оболочки. Чтобы представить их действие физически, сопоставим его с уже известным нам эффектом от поперечных сил. Поперечные силы стремятся расслоить материал, сместить отдельные мысленно выделяемые по высоте сечения слои; в оболочке тангенциальные силы стремятся сдвинуть один относительно другого отдельные криволинейные слои, из которых она состоит. По высоте сечения напряжения постоянны. Этим как раз и определяется эффективность данной конструктивной формы — материал используется равномерно и полностью.

Мысленно выделенные в двух направлениях криволинейные слои являются лишь весьма приблизительной моделью, которая помогает нам понять, как работают конструкции этого типа. Эти слои работают совместно, почему и возникают сдвигающие силы. Плюсы сводчатой оболочки двоякой кривизны (так называется эта конструктивная форма) обеспечиваются только при наличии определенных условий опирания. По четырем контурам оболочки необходимы несущие конструкции линейного типа (балки, фермы или арки), которые называются диафрагмами. Диафрагмы нагружены особым образом: вертикальные нагрузки оказываются не основными. Это звучит малоубедительно, но оболочка передает свою нагрузку на диафрагмы в основном посредством направленных под углом, сдвигающих усилий. Их вертикальная составляющая неминуемо вызывает в опорных элементах изгибающие моменты и поперечные силы, а горизонтальная — значительные растягивающие усилия. Для диафрагм характерно сложное, комбинированное силовое воздействие, обусловленное их функциями, так как они служат не просто балками, а опорами оболочки двоякой кривизны. О механизме нагрузки диафрагм (с физической точки зрения) можно судить по тому, что под действием нагрузки оболочка стремится расправиться, превратиться в плиту. Именно этому выпрямлению препятствуют диафрагмы, вследствие чего в них возникают растягивающие усилия.

Этот тип сводчатых конструкций — один из наиболее распространенных в мировой строительной практике и служит для покрытия обширных прямоугольных пространств самого различного назначения (промышленных зданий, залов, ангаров и т.д.). Их поверхность может быть частью сферы, эллипсоида, эллиптического параболоида или другой стереометрической фигуры. Основным материалом, из которого они выполняются, является железобетон, хотя имеются примеры оболочек из стали в виде системы взаимно пересекающихся несущих ребер, клетки которых заполняются легкими панелями. Для меньших приемов применяют также оболочки из стеклопластиков и армированных пластмасс, которые называют материалами будущего. В НРБ сводчатая оболочка двоякой кривизны выполнена над главным корпусом ТЭЦ «Марица-исток 1», где она перекрывает пролеты до 40 м. Об экономичности покрытий этого рода говорит тот факт, что средняя толщина оболочки при таком пролете составляет всего 15 см.

Рис.27. Разнообразие токкостенных пространственных конструкций практически бесконечно. Не редки случаи и "плагиата" у природы

Но сводчатые оболочки двоякой кривизны — это лишь один из огромного множества видов пространственных конструкций. Для нынешнего этапа их развития характерно то, что специалисты уже давно не довольствуются элементарными видами поверхностей криволинейного профиля, а применяют самые сложные сочетания криволинейных поверхностей и плоскостей. В последние годы видов пространственных конструкций стало так много, что их классификация выходит за рамки даже самых полных математических курсов по теории поверхностей. В ряде случаев единственным методом описания поверхностей оболочек может быть только чертеж. Впрочем, некоторое представление о разнообразии их видов может дать рис. 27.

К наиболее распространенным видам пространственных конструкций покрытия можно отнести и купола. Гладкие толстостенные купола известны с древнейших времен; выполнялись и ребристые купола (кирпичные арки по меридианам и кирпичные пояса по параллелям), В связи с целым рядом статических, экономических и эстетических соображений этот род покрытия актуален и в наши дни. Область его применения — это такие огромные пространства, как манежи, цирки, спортивные залы, планетарии.

В геометрическом отношении купола представляют собой осесимметричные поверхности ротационного типа. Эти поверхности могут быть частью сферы, эллипсоида или другой фигуры. Главное то, что под действием эксплуатационных нагрузок достигается безмоментное напряженное состояние.

Поделиться:
Популярные книги

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Всадник Системы

Poul ezh
2. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Всадник Системы

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Восход черной звезды

Звездная Елена
4. Катриона
Фантастика:
фэнтези
6.25
рейтинг книги
Восход черной звезды

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Новый Рал 9

Северный Лис
9. Рал!
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Новый Рал 9

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Книга 4. Игра Кота

Прокофьев Роман Юрьевич
4. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
рпг
6.68
рейтинг книги
Книга 4. Игра Кота

В поисках Оюты

Лунёва Мария
Оюта
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
В поисках Оюты