Чтение онлайн

на главную - закладки

Жанры

Нейронные сети. Эволюция
Шрифт:

– вывод на консоль квадрата переменной x;

– в теле оператора, увеличиваем x на единицу, (запись: x+= 1, эквивалентна записи: x = x + 1)

После чего, программа возвращается к условию цикла. Если условие снова истинно, то мы снова выполняем эти два действия. И так до тех пор, пока x не станет больше 4. Тогда условие вернет ложь и цикл больше не будет выполняться.

Цикл for будем использовать, в основном, для того, чтобы перебирать элементы массива, согласно его индексам. Запишем тот же пример, что и с while, с квадратами первых шести натуральных чисел, используя цикл for:

Конструкция for i in —создает

цикл, организуя счетчик для каждого числа из списка массива, путем назначения текущего значения переменной i. При первом проходе цикла выполняется присваивание i=0, потом i=1, i=2, и так до тех пор, пока мы не дойдем до последнего элемента списка, которому присвоится значение i=6.

Применяя функцию range , эту операцию можно сделать немногим иначе:

В данном примере, функция range – задает последовательность счета натуральных чисел, до конечного значения, указанного в скобках.

Классы и их объекты

В реальной жизни мы чаще оперируем не переменными, а объектами. Стол, стул, человек, кошка, собака, корабль – это все объекты. Наилучший способ знакомства с объектами – это рассмотреть конкретный пример:

# класс объектов Сat (кошка)

class Сat:

# Кошки говорят – “Мяу!”

def says (self):

print (‘Мяу!’)

pass

pass

Запись class Сat – означает что создан класс Сat (кошка), а функция def says, внутри класса – это метод класса Сat, который выполняет определенные действия связанные с этим классом. В нашем случае созданный нами метод says выводит на экран – ‘Мяу!’.

Давайте на примере покажем, как создаются объекты класса и работают его методы.

classcat = Сat #создание объекта classСat, класса Сat

classcat.says #использование метода says , объекта classСat

Методов в классе может содержаться так много, насколько это необходимо, для его описания. Кошка помимо того, что может говорить: “Мяу!”, обладает и рядом других важных параметров. К ним относятся цвет шерсти, цвет глаз, кличка, и так далее. И все это, можно описать при помощи методов в классе. Давайте опишем выше сказанное в Python:

Множеству объектов, можно присваивать одинаковый класс и эти объекты в свою очередь, будут обладать одинаковыми методами:

Чтобы получить более полное представление о возможностях объектов, давайте добавим в наш класс переменные, которые будут хранить специфические данные этих объектов, а также методы, позволяющие просматривать и изменять эти данные:

Давайте

разбираться что же мы тут написали.

В любом классе можно определить функцию __init__. Эта функция всегда вызывается, когда мы создаем реальный объект класса, с изначально заданными атрибутами. Атрибут – это переменная, которая относится к классу, в котором она определена. В нашем случае, при создании объекта, мы сразу можем указать его атрибуты – кличку и количество лет, которые сразу присваиваются этому объекту. Через созданный нами метод status, мы можем вывести информацию о количестве лет и кличке нашего объекта. Метод number_of_years (self, years), принимает число и изменяет атрибут класса – количество лет. Метод says, не изменился, он все также говорит голосом нашего объекта – ‘Мяу!’.

ГЛАВА 3

Рождение искусственного нейрона

Моделирование нейрона как линейного классификатора

Настало время практически реализовать линейную классификацию. Для этого в Python смоделируем работу искусственного нейрона. Попробуем решить нашу задачу, найдя промежуточные значения, при заданном наборе входных и соответствующим им выходным (целевым) параметрам. Как мы помним – это были высота и длина двух разных видов животных. Это может быть и любой другой условный набор данных, которые можно представить, как параметры размеров одежды, предметов, насекомых, веса, стоимости, градусов и любых других. Отобразим наше задание – список с параметрами двух видов животных:

В дальнейшем все данные, которые надо анализировать при помощи искусственных нейронов и их сетей, будем называть – обучающей выборкой. А процесс изменения коэффициентов, в нашем случае – коэффициент А, в зависимости от функции ошибки на выходе, будем называть – процессом обучения.

Примем за значение х – длины животных, а Y – высота. Так как Y (игрек большое) – это и есть ответ: Y = Ax, то условимся что он и будет целевым значением для нашего нейрона (правильным ответом), а входными данными будут все значения переменной х.

Отобразим для лучшего представления входных данных, график обучающей выборки:

Видно, что наши данные напоминают прямую линию, уравнение которой Y = = 2*x. Данные находятся около значений этой функции, но не повторяют их. Задача нашего нейрон суметь с большой точностью провести эту прямую, несмотря на то, что данные по остальным точкам отсутствуют (например, нет данных о Y координате с точкой с x = 5).

Поделиться:
Популярные книги

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4

Бомбардировщики. Полная трилогия

Максимушкин Андрей Владимирович
Фантастика:
альтернативная история
6.89
рейтинг книги
Бомбардировщики. Полная трилогия

Том 13. Письма, наброски и другие материалы

Маяковский Владимир Владимирович
13. Полное собрание сочинений в тринадцати томах
Поэзия:
поэзия
5.00
рейтинг книги
Том 13. Письма, наброски и другие материалы

Интернет-журнал "Домашняя лаборатория", 2007 №8

Журнал «Домашняя лаборатория»
Дом и Семья:
хобби и ремесла
сделай сам
5.00
рейтинг книги
Интернет-журнал Домашняя лаборатория, 2007 №8

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Хранители миров

Комаров Сергей Евгеньевич
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Хранители миров

Кристалл Альвандера

Садов Сергей Александрович
1. Возвращенные звезды
Фантастика:
научная фантастика
9.20
рейтинг книги
Кристалл Альвандера

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3