Нормальная физиология
Шрифт:
Глава 11. Терморегуляция
Температура окружающей среды оказывает большое влияние на физиологическую активность живых организмов. В разных регионах Земли температура колеблется от -50" во время арктической зимы до +60°С летом в некоторых пустынях. Температурный диапазон, в котором способны функционировать живые клетки, составляет около 50°. Живые клетки замерзают при нескольких градусах ниже 0°С. Кристаллы льда, которые образуются при замерзании тканей, разрушают клеточные структуры. Однако некоторые животные способны восстанавливать свою жизнедеятельность после размораживания. При температурах выше 45°С происходит денатурация белков, т. е. в этих условиях функционирование организма невозможно. Температура
При изучении влияния температуры на скорость реакции можно путем сравнения этой скорости при двух разных температурах определить температурный коэффициент. Разница температур, равная 10°С, стала стандартным диапазоном, по которому определяют температурную чувствительность биологических систем. В этом случае температурный коэффициент, обозначаемый О10. рассчитывают из уравнения Вант-Гоффа. Согласно правилу Вант-Гоффа скорость химических реакций возрастает при повышении температуры на 10°С примерно в 2–3 раза.
В животном мире существует несколько основных способов реагирования на внешнюю температуру. У пойкилотермных (холоднокровных) животных, к которым относятся большинство беспозвоночных и низших позвоночных, температура тела зависит от температуры окружающей среды. Интенсивность энергетических процессов и уровень активности пойкилотермных организмов определяются температурой внешней среды (рис. 27).
У пойкилотермиых животных температура тела близка к температуре воздуха. Гомойотермные сохраняют температуру тела на сравнительно постоянном уровне в широком диапазоне температур воздуха
В процессе эволюции у млекопитающих и птиц выработалась способность сохранять одинаковую температуру внутренних частей тела, несмотря на ее изменения в окружающей среде (терморегуляция), что обеспечивает относительное постоянство метаболических процессов и делает организм менее зависимым от внешних изменений. Такие организмы называются гомойотермными (теплокровными), их отличают от пойкилотермиых организмов, близких по массе, значительно более высокий уровень энергетического обмена и относительно независимый от температуры окружающей среды уровень активности. Интенсивность обмена энергии на единицу массы тела у гомойотермных животных даже после разрушения центров терморегуляции как минимум в 3 раза превышает интенсивность обмена у пойкилотермиых (при одинаковой температуре).
Поскольку гомойотермные организмы могут поддерживать постоянную температуру, а следовательно, постоянный уровень активности независимо от окружающей температуры, они имеют превосходство над пойкилотермными животными. Вместе с тем, пойкилотермия дает преимущество в том случае, когда пищевые ресурсы ограничены или подвержены сезонным изменениям.
Есть животные, которые обладают способностью переходить на некоторое время из гомойотермного состояния в пойкилотермное и наоборот. Такой переход наблюдается у животных, впадающих в зимнюю спячку (сурки, суслики, сони и др.), отчего они получили название гетеротермных. Гетеротермия – это особое состояние, при котором гомойотермные животные на время выключают терморегуляцию и температура их тела снижается до пределов, отличных приблизительно на ГС от окружающей среды. Гетеротермия является свойством, приобретенным в процессе эволюции позже, чем гомойотермия, и имеет важное значение для приспособления организма к неблагоприятным условиям (например, к недостатку пищи, воды).
Животных можно также классифицировать по тем источникам тепла, которые они используют для поддержания температуры тела. Эктотермные, например рептилии, используют для этого наружное тепло; эндотермные, и в частности
Температура тела и тепловой баланс
Возможность процессов жизнедеятельности ограничена узким пределом температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25° и ее увеличение выше 43°, как правило, смертельно, особенно чувствительны к изменениям температуры нервные клетки.
Температура тела зависит от двух факторов: интенсивности образования тепла (теплопродукции) и величины потерь тепла (теплоотдачи). Главным условием поддержания постоянной тем-пературы тела гомойотермных животных, в том числе и человека, является достижение устойчивого баланса теплопродукции и теп-лоотдачи. Такой баланс описывается уравнением M±EH±Et±EK-EK±S=О, где М – метаболическая теплопродукция; Ея – излучение; ЕТ – теплопроведение; Ек – конвекция; Ет – испарение; S – накопление тепла; плюс означает приток, минус – теплоотдачу.
Тепло может быть получено или отдано путем излучения, теплопроведения и конвекции в зависимости от условий внешней среды. Тепло всегда образуется в качестве побочного продукта биохимических реакций, протекающих в организме, поэтому метаболизм всегда имеет положительный знак, а испарение – отрицательный. Противоположная реакция – конденсация практически не влияет на тепловой баланс у человека.
Вся высвобождающаяся в организме при биологическом окислении питательных веществ энергия в конечном счете превращается в тепло. Чем интенсивнее протекание обменных процессов, тем больше теплообразование в организме. Скорость биологического окисления возрастает при увеличении температуры. Взаимозависимость обменных процессов и теплообразования не приводит к самоускорению величины обмена и температуры, так как прирост температуры тела сопровождается увеличением отдачи тепла. Оптимальное соотношение теплопродукции и теплоотдачи обеспечивается совокупностью физиологических процессов, называемых терморегуляцией. Различают химическую и физическую терморегуляцию.
Химическая терморегуляция
Этот вид регуляции температуры осуществляется за счет изменения уровня обмена веществ, что ведет к повышению или понижению образования тепла в организме. Суммарная теплопродукция в организме складывается из первичной теплоты, выделяющейся в ходе постоянно протекающих во всех тканях реакций обмена веществ, и вторичной теплоты, образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Интенсивность метаболических процессов неодинакова в различных органах и тканях, поэтому их вклад в общую теплопродукцию неравнозначен. Наибольшее количество тепла образуется в мышцах при их напряжении и сокращении. Образование тепла в мышцах при этих условиях получило название сократительного термогенеза. Сократительный термогенез является основным механизмом дополнительного теплообразования у взрослого человека.
У новорожденных, а также у мелких млекопитающих имеется механизм ускоренного теплообразования за счет возрастания скорости окисления жирных кислот бурого жира, который расположен в межлопаточной области, вдоль крупных сосудов грудной и брюшной полостей, в затылочной области шеи. Такой оттенок ей придают многочисленные, в сравнении с белой жировой тканью, окончания симпатических нервных волокон и митохондрии, содержащиеся в клетках этой ткани. Масса бурой жировой ткани достигает у взрослого 0,1% массы тела. У детей содержание бурого жира больше, чем у взрослых. В митохондриях жировых клеток имеется полипептид, способный разобщать идущие здесь процессы окисления и образования АТФ. Результатом этого является образование в этой ткани значительно большего количества тепла, чем в белой жировой ткани. Этот механизм получил название несократительного термогенеза.