Новые космические технологии
Шрифт:
Данные явления, обычно, объясняют, как взаимодействие токов в проводнике сложной формы с собственным магнитным полем, то есть, силой Лоренца. Причину возникновения силы Лоренца мы уже рассматривали ранее, как результат градиента давления эфира, схема показана на рис. 10. Следовательно, электрокинетические движители представляют собой один из вариантов эфироплавательных движителей, использующих градиент давления окружающей эфирной среды для создания активной движущей силы в заданном направлении.
В работах Сигалова [4] рассмотрены и другие проводники сложной формы: П-образный, Г-образный и так далее. Предлагаю рассмотреть еще один интересный вариант: проводник с током в форме кардиоиды, рис. 14.
Данный контур с током похож на V-образный вариант, причем, силы отталкивания двух соседних участков проводника на входе тока в контур создают силу, которая сонаправлена с результирующей силой, образуемой в области внутреннего изгиба кардиоиды. Весьма перспективная схема, на мой взгляд. Эксперименты в моей домашней лаборатории 1991–1996 года показали достаточно хорошие результаты.
Проводники питания, в данной схеме, могут быть скручены в витую пару. Проводник может быть один, или контур может быть изготовлен как многовитковая катушка. При наблюдениях действующих сил F12 и F21, целесообразно не закреплять проводники на каркасе, но при измерениях движущей силы проводники необходимо закрепить, например, на жесткой пластине.
ЭкспериментыГлава 5 Криволинейное движение тела
Всем хорошо знакомы силы инерции, возникающие при ускорении или торможении движущегося тела. В терминах эфиродинамики, можно сказать, что «эфир проявляет себя» при ускорении тел. Впрочем, существование эфирной упругой среды можно обнаружить и для неподвижных тел, в процессах их упругой деформации (растяжения или сжатия межатомных связей), но мы рассмотрим эти эффекты позже.
Ускорение криволинейного движения зависит от кривизны траектории (радиуса), а создаваемая при измерении траектории центробежная сила F определяется по простой формуле, второй закон Ньютона:
F = ma (F.1) где F – сила, m – масса движущегося тела, а – ускорение криволинейного движения.
Сила F зависит от ускорения, а оно является функцией скорости и радиуса кривизны траектории движения тела, имеющего инерциальную массу. При движении тела по окружности, создается одинаковая сила F во всех радиальных направлениях. При движении тела по криволинейной траектории переменного радиуса, величина ускорения и силы будет меняться на разных участках траектории. В сумме, результирующая сила может быть ненулевая, что создает движущую силу в одном преимущественном направлении.
Использовать данную идею можно разными конструктивными методами, например, на рис. 15 предлагается схема движителя Вейника, в котором по криволинейной траектории переменного радиуса катаются металлические шарики [6]. В одном из экспериментов Вейника, в конструкции БМ-28, по криволинейной траектории, примерно 45 мм диаметром, двигалось 8 металлических шариков диаметром 8 мм. Вращение обеспечивал электропривод, на его оси было установлено «водило» – диск, в котором сделано 8 радиальных каналов для шариков. Шарики могли свободно менять свой радиус вращения внутри канала. Очевидно, что, при вращении, центробежная сила прижимает шарики к внешнему кольцу, которое установлено с эксцентриситетом: ось внешнего кольца, ограничивающего радиус вращения шариков, не совпадает с осью мотора. Эксцентриситет траектории движения шариков, в данной конструкции А.И. Вейник, был равен 0,7 мм. При скорости вращения порядка 21000 оборотов в минуту, устройство создавало движущую силу около 1,4·10-4 (Н), направленную перпендикулярно оси вращения мотора, в направлении эксцентриситета орбиты шариков.
На фото (справа на рис. 15) показана парная конструкция движителя Вейника. Сочетание двух приводов встречного вращения позволяет компенсировать реакцию крутящего момента, сохраняя одинаковое направление движущей силы F в обоих движителях. Эксцентриситет орбит шариков обоих приводов должен быть ориентирован в одном направлении.
Данный эксперимент Вейника был воспроизведен в ООО «Лаборатория Новых Технологий Фарадей» в 2002 году. Отметим, что работа движителя, разработанного в нашей лаборатории, сопровождалась значительной вибрацией, поэтому, увеличение эксцентриситета или скорости вращения было затруднительно. Силы, действующие в данной конструкции, были незначительны. Теоретически, рассматривался один из вариантов модернизации данной схемы: предлагалось добавить в конструкцию резиновый (упругий) обод, к которому центробежная сила должна прижимать вращающиеся шарики. Изучив вопрос надежности конструкции и перспективы данного метода, было решено найти другое техническое решение концепции движителя, использующего криволинейное ускоренное движение рабочего вещества, то есть, инерциальной массы.
Схема с применением жидкого рабочего вещества, движущегося по криволинейной замкнутой траектории переменного радиуса, была рассмотрена мной в 1996 году, [1]. Жидкое рабочее вещество, в отличие от металлических шариков, более удобно для применения в данной схеме. Разумеется, в данном случае, следует оптимизировать три фактора: увеличить плотность жидкости (рабочую массу при том же объеме), увеличить скорость движения рабочей массы, и обеспечить упругость взаимодействия. Предположим, что на поворотном участке трубопровода (корпуса), по U-образной траектории, с ускорением движется жидкое рабочее вещество, то есть, некоторая инерциальная масса, рис. 16.
Очевидно, что на частицы жидкости действует сила F = ma, согласно второго закона Ньютона. Данная сила прижимает рабочую жидкость к внутренней поверхности трубы на радиусе поворота.
Вернемся к электрокинетическим конструкциям. Эффекты Сигалова – это варианты проявления законов Грассмана для постоянных токов в проводнике сложной формы. Однако, есть и частный случай данного явления: мощная движущая сила возникает при импульсе тока в V-образном или U-образном проводнике.
На мой взгляд, этот случай не относится к эффекту Ампера – Грассмана, то есть, к взаимодействию тока и магнитного поля, а является результатом возникновения центробежной силы в электрокинетических движителях, по аналогии с концепцией движителя, показанной на рис. 16.
При таком рассмотрении, импульсный электрокинетический эффект может найти большее практическое применение, чем электрокинетические движители постоянного тока. Дело в том, что фронт импульса, то есть, волна смещения электронов в проводнике при включении тока, перемещается по проводнику со скоростью более сотен километров в секунду. Такой сдвиг вещества небольшой массы, но имеющей большую скорость, создает мощный кратковременный импульс движущей силы. При установлении постоянного тока, центробежные силы очень малы, так как реальная скорость движения электронов в проводнике составляет всего около 0,1 мм в секунду.
В связи с этим, реализация идеи с насосом и жидким циркулирующим рабочим веществом, рис. 16, не представляет большого практического интереса. Высокочастотный импульсный электрокинетический эффект, при наличии мощного источника электрической энергии, может быть намного эффективнее, чем любые механические устройства, за счет большой скорости распространения фронта импульса электрического тока в проводнике.
Масса частиц рабочего вещества – это второй фактор увеличения центробежной силы, согласно формуле F.1. Электроны имеют очень маленькую инерциальную массу.
Интересно было бы организовать эксперименты по изучению импульсного электрокинетического эффекта в U-образном контуре для протонов (ионизированного водорода), поскольку они в 1836 раз тяжелее электронов. Впрочем, более удобным для практического применения может оказаться конструктивный вариант U-образного импульсного электрокинетического движителя, рабочим веществом которого является электролит. В таком случае, движитель будет похож на электролитический конденсатор необычной формы, с импульсным источником питания.Глава 6 Гироскоп переменного радиуса
Рассмотрим отдельно варианты конструкции движителей, использующих «принцип гироскопа переменного радиуса». Данный принцип был предложен и подробно описан в книге «Экспериментальная гравитоника» [4].
Первый этап экспериментальных исследований, Спартак Михайлович Поляков проводил с помощью механического устройства, в котором создавалось орбитальное движение
Рис. 17. Гироскопы движителя «Елка»
Результаты экспериментов Полякова показаны на графиках рис. 18 и рис. 19.
Перед тем, как проверять силовые эффекты, возникающие за счет прецессии вращающихся гироскопов, Поляков калибровал систему. На рис. 18 показаны результаты измерений, которые были сделаны при отсутствии орбитального вращения. В данном случае, измерительная система показывает наличие реактивной силы, которая возникает только за счет «качания» гироскопов вверх и вниз, при отсутствии орбитального вращения.
При этом, центр масс системы смещается, так как изменяется положение гироскопов. Таким образом, автор определяет «динамический ноль» системы. Не имеет значения включены или выключены гироскопы, если нет осевого вращения. Суммарная сила, действующая вдоль оси «Елки», интегрированная за несколько «циклов качаний» гироскопов, будет равна нулю.
При наличии осевого вращения включенных гироскопов, создаются несимметричные силовые эффекты импульсного характера, рис. 19.
При такой траектории движения гироскопов, на весь корпус экспериментального устройства действуют импульсы, возникающие при переводе орбитально вращающегося гироскопа на меньший радиус вращения. Измерения показали, что суммарный импульс тяги, действующий на корпус устройства, с учетом калибровки относительно «динамического нуля», направлен вдоль оси вращения вверх, и достигал 573 грамма.
Итак, в соответствии с методом Полякова, рабочую массу (гироскоп) приводят во вращательное движение, а затем изменяют радиус вращения гироскопа, который является управляемым параметром вращения рабочей массы. Во время уменьшения радиуса вращения рабочего тела возникает кратковременный импульс тяги, направленный вдоль оси вращения. Очевидно, что изменение радиуса вращения рабочей массы в данном случае может носить только периодический характер, следовательно, создаваемая сила тяги имеет импульсный характер. В процессе возврата рабочей массы в начальное положение, характеризуемое максимальным радиусом вращения, импульс тяги отсутствует.
Подобные технологии не могут эффективно использоваться в конструкциях движителей, требующих непрерывной работы, например, в транспортных средствах. Впрочем, они могут найти применение в системах импульсной корректировки орбиты космических аппаратов.
В апреле 1998 года, Спартак Михайлович Поляков демонстрировал мне эксперимент с другим движителем, в котором был организован процесс прецессии гироскопа, а в роли рабочей массы использовалась ртуть. Данный движитель и результаты измерений показаны на рис. 20.
Основные детали конструкции данного экспериментального устройства следующие: пластиковый корпус дисковой формы, ротор, электромотор и динамометр. Устройство могло скользить вверх – вниз по фторопластовым направляющим, опираясь на несколько взаимно отталкивающихся магнитов. Двигаясь вверх-вниз, ротор оказывал силовое воздействие на тензометрический датчик, который измерял величину создаваемой силы тяги. В данном варианте конструкции, Спартак Михайлович Поляков получал до 2,5 кг силы тяги, при потреблении электроэнергии на вращение привода от 100 ватт до 1 кВт.
Особо отметим, что график, показанный в правой части рис. 20, указывает на нелинейный характер функции зависимости силы тяги от скорости вращения.
Общий вес движителя, в данном эксперименте, составлял 30 килограмм. Вес ртути, выполняющей роль гироскопа, составлял около 15 кг.
В своем письме 20 марта 1998 года, Спартак Михайлович Поляков доказывал мне перспективность данной схемы: «При тех же габаритах движителя, увеличение мощности электропривода до 10 кВт и скорости вращения до 10 тысяч оборотов в минуту, даст увеличение силы тяги до 2 тонн».
В развитие предлагаемой концепции, рассматривая частицы материи, как микрогироскопы, Спартак Михайлович показал, что в ферромагнитных веществах можно создать прецессионные движения магнитного момента частиц, и получить силовые эффекты, за счет реакции эфирной среды. Другое применение данной технологии – это излучение направленного потока «гравитационных волн», в формулировке Полякова. В подтверждение своей теории гравитации, Поляков успешно провел ряд экспериментов по отклонению луча света, используя магнитострикционные материалы. Он доказал связь магнетизма и гравитации, исходя из предложенной им модели электрона.
Поляков также предложил несколько конструктивных решений не только для создания мощных излучателей гравитационных волн, а также и приемника гравитационных волн.
Отметим, что «гравитационные волны», с другой стороны, являются продольными волнами в эфирной среде, что вполне согласуется с механизмом их создания методом вынужденной прецессии гироскопов – магнитных моментов частиц ферромагнитного материала.
Работы Полякова прервали отсутствие финансирования и болезнь. На фото рис. 21, Спартак Михайлович Поляков.
Данное направление исследований было затем экспериментально изучено в НИИ Космических Систем имени А.А. Максимова», Филиал ФГУП «ГКНПЦ имени М.В.Хруничева», группой разработчиков под руководством Меньшикова В.А. [7].
О результатах испытаний движителя, созданного группой Меньшикова, можно прочитать в открытых источниках [8]. При работе данного движителя, электропривод создает вращение ротора, на котором укреплена труба в форме конусной спирали. Начиная вращение, ротор «увлекает за собой ртуть», которая движется внутри ротора от вершины к основанию конуса. Насос обеспечивает возврат ртути, вдоль оси устройства, от основания конусной спирали в сторону ее вершины. Таким образом, ртуть непрерывно перемещается по трубе, имеющей форму конусной спирали, от вершины к ее основанию, и нагнетается насосом по возвратной осевой трубе к вершине конуса ротора. Согласитесь, что данная схема напоминает генераторы Шаубергера, хотя имеет принципиальные недостатки конструкции. В статье [8] авторы отмечали, что импульс тяги существует недолго, от нескольких секунд до одной минуты. Кроме того, генераторы Шаубергера могли работать в режиме самовращения, при этом создавая движущую силу. По конструкции, показанной в проектах Меньшикова [8], таких официальных данных нет.
Экспериментальные исследования способов создания активной движущей силы, по методике Полякова, которую мы называем «гироскоп переменного радиуса», проводились также в ООО «Лаборатория Новых Технологий Фарадей», в период с 2002 по 2005 год.
Была подана заявка на патент РФ № 2002128658/06(030307) от 25.10.2002 года.
В предлагаемом техническом решении, были устранены недостатки аналогов, поскольку в них импульс полезной однонаправленной тяги исчезает, когда скорость вращения жидкого рабочего тела (ртути) становится равна скорости вращения ротора. Этому аспекту было уделено основное внимание при конструировании, кроме выполнения общих принципов создания «гироскопа переменного радиуса», в соответствии с теорией Полякова.
На рис. 22 показаны схема и основные элементы конструкции экспериментального движителя Фролова, описанного в патентной заявке № 2002128658/ 06(030307), 25.10.2002 г.