Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

Возможно, что алгебраические числа оказались бы подходящим инструментом для двух обсуждаемых нами множеств, но они не снимают все наши трудности в общем случае. Пусть мы рассматриваем множество (темная область на рис. 4.5), определяемое неравенством

y >= e z ,

где х + iy (= z ) — точка в плоскости Аргана.

Рис. 4.5.Множество, определенное экспоненциальным соотношением у >= е z ,

должно также рассматриваться как рекурсивное

Внутренняя часть множества, равно как и внутренняя часть его дополнения, будут рекурсивно нумеруемыми в соответствии с любой из вышеизложенных точек зрения, но (как следует из знаменитой теоремы Ф.Линдеманна, доказанной в 1882 году) граница, у = е х , содержит только одну алгебраическую точку, а именно точку z = i . В этом случае алгебраические числа никак не могут нам помочь при исследовании алгоритмической по своей природе границы!

Несложно определить другой подкласс вычислимых чисел, которые будут подходить в данном конкретном случае, но при этом все равно останется ощущение, что правильный подход нами до сих пор так и не был найден.

Некоторые примеры нерекурсивной математики

Существует немало областей математики, где возникают проблемы нерекурсивного характера. Это означает, что мы можем сталкиваться с задачами, ответ к которым в каждом случае либо «да», либо «нет», но определить, какой из них верен, — нельзя из-за отсутствия соответствующего общего алгоритма. Некоторые из этих классов задач выглядят на удивление просто.

Например, рассмотрим задачу об отыскании целочисленных решений системы алгебраических уравнений с целыми коэффициентами. Эти уравнения известны под именем диофантовых(в честь греческого математика Диофанта, который жил в третьем веке до нашей эры и изучал уравнения такого типа). Подобные уравнения выглядят, например, как

z 3 y — 1= 0,

yz 2— 2x— 2 = 0,

у 2— 2xz + z + 2 = 0,

и задача состоит в том, чтобы определить, могут ли они быть решены в целых x , y , z . Оказывается, что в этом конкретном случае существует тройка целых чисел, дающая решение этой системы:

х = 13, у = 7, 2 = 2.

Но для произвольной системы диофантовых уравнений никакого алгоритма не существует [87] . Арифметика Диофанта, несмотря на простоту входящих в нее выражений, является частью неалгоритмической математики!

(Несколько менее тривиальным является пример топологической эквивалентностимногообразий. Я упоминаю об этом только вкратце, ибо в главе 8 будут рассматриваться вопросы, имеющие к данному определенное отношение. Чтобы понять, что такое «многообразие», представьте для начала петлю, которая является многообразием в одном измерении; затем представьте замкнутую поверхность — многообразие в двух измерениях. Далее попробуйте представить некую «поверхность», имеющую три и более измерений. «Топологическая эквивалентность» двух многообразий означает, что одно из них может быть деформировано в другое путем непрерывных преобразований — без разрывов и склеек. Так, сфера и поверхность куба являются топологически эквивалентными, хотя они не эквивалентны поверхности кольца или чашки с ручкой — хотя последние топологически эквивалентны друг другу. При этом для двумерныхмногообразий существует алгоритм, позволяющий определить, эквивалентны ли произвольные два многообразия друг другу или нет — в сущности, заключающийся в подсчете «ручек», которые имеет каждая из поверхностей. Для случая трех измерений вопрос о существовании такого алгоритма на момент написания книги остается без ответа; однако для четырех и более измерений уже известно, что такого алгоритма быть не может . Возможно, четырехмерный случай имеет некое отношение к физике, поскольку согласно теории общей относительности Эйнштейна пространство и время совместно образуют четырехмерное многообразие (см. главу 5, «Специальная теория относительности Эйнштейна и Пуанкаре»). Герох и Хартли в 1986 году высказали

предположение о том, что свойство неалгоритмичности может иметь отношение к «квантовой гравитации» (см. также главу 8).)

87

Это дает (отрицательный) ответ на десятую проблему Гильберта, упомянутую на с. 44 (см., например, Дэвлин [1988]). Здесь количество переменных неограниченно. Однако, известно, что для выполнения свойства неалгоритмичности достаточно и девяти.

Давайте теперь рассмотрим иной тип задач, называемых задачами со словами [88] . Допустим, у нас есть некий алфавит символов, и мы рассматриваем различные строки этих символов, трактуя их как слова . Слова могут сами по себе не иметь никакого значения, но мы должны иметь некоторый (конечный) список «равенств» между ними, которые мы сможем использовать для дальнейшего построения таких «равенств». Это делается путем подстановки слов из исходного списка в другие (как правило, более длинные) слова, которые содержат их в виде составных частей. Каждая такая часть может быть заменена на равную ей в соответствии с используемым списком. Тогда для любой данной пары слов мы должны решить задачу об их равенстве согласно этим правилам.

88

Эта конкретная задача называется (если быть более точным) «задачей со словами для полугрупп». Существуют также и другие разновидности этой задачи, в которых действуют несколько отличные правила. Но нас это сейчас волновать не должно.

В качестве примера мы можем взять для нашего исходного списка, скажем, такие равенства:

EAT = АТ

АТЕ = А

LATER = LOW

PAN = PILLOW

CARP = ME.

Отсюда мы можем, например, вывести

LAP = LEAP,

используя последовательные замены из второго, первого и снова второго соотношения из нашего исходного листа:

LAP = LATEP = LEATEP = LEAP.

Проблема теперь заключается в том, чтобы выяснить, сможем ли мы для любой наперед заданной пары слов осуществить вышеописанным образом переход от одного из них к другому? Можем мы перейти от CATERPILLAR к MAN, или, скажем, от CARPET — к MEAT? Ответ в первом случае оказывается утвердительным, тогда как во втором — отрицательным. Когда ответ утвердителен, стандартный путь показать его справедливость заключается в построении цепочки равенств, где каждое из слов получается из предыдущего с учетом допустимых соотношений. Итак, имеем (обозначая буквы, назначенные к замене, жирным шрифтом, а только что измененные — курсивом):

Как мы можем утверждать, что посредством разрешенных подстановок невозможно получить MEAT из CARPET? Для демонстрации этого факта придется подумать чуть больше, однако показать это не так уж сложно, причем множеством разных способов. Простейшим представляется следующий: в каждом «равенстве» из нашего списка число букв Аплюс число букв Wплюс число букв Мс каждой стороны одинаково. Значит, общая сумма указанных букв не может меняться в процессе преобразования по допустимым нашим списком правилам. Однако, для CARPETэта сумма равна 1 , а для MEAT 2 . Следовательно, не существует способа получить из первого слова второе при помощи вышеприведенного списка равенств.

Заметьте, что когда два слова «равны», мы можем показать это, просто приведя допустимую формальную строчку символов, построенную с помощью заданных нами правил; тогда как в случае их «неравенства» мы должны прибегать к рассуждениям об этих самых правилах. Существует четкий алгоритм, который мы можем использовать для установления «равенства» между двумя словами в том случае, когда они действительно «равны». Все, что нам требуется, это составить лексикографический перечень всех возможных последовательностей слов, и потом вычеркнуть из этого списка любую строчку, где имеется пара слов, в которой последующее нельзя получить из предыдущего при помощи какого бы то ни было правила из исходного списка. Оставшиеся последовательности дадут нам набор всех искомых «равенств» между словами. Однако, в общем случае нет такого явного алгоритма для случая, когда два слова «неравны», и нам, возможно, пришлось бы применить «интеллект» для установления этого факта. (Конечно же, мне потребовалось некоторое время, прежде чем я заметил описанный выше «трюк», при помощи которого доказал, что CARPETи MEAT«неравны». А для другого примера «трюк» мог бы понадобиться совершенно иной. Кстати, интеллект помогает — хотя и не обязательно — и в случае, когда необходимо установить существованиенекоторого «равенства».)

Поделиться:
Популярные книги

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Сборник коротких эротических рассказов

Коллектив авторов
Любовные романы:
эро литература
love action
7.25
рейтинг книги
Сборник коротких эротических рассказов

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Титан империи 8

Артемов Александр Александрович
8. Титан Империи
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Титан империи 8

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Волхв

Земляной Андрей Борисович
3. Волшебник
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волхв

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя